Bias Identification and Attribution in NLP Models With Regression and Effect Sizes

Authors

  • Erenay Dayanik University of Stuttgart
  • Thang Vu University of Stuttgart
  • Sebastian Padó University of Stuttgart

DOI:

https://doi.org/10.3384/nejlt.2000-1533.2022.3505

Abstract

In recent years, there has been an increasing awareness that many NLP systems incorporate biases of various types (e.g., regarding gender or race) which can have significant negative consequences. At the same time, the techniques used to statistically analyze such biases are still relatively simple. Typically, studies test for the presence of a significant difference between two levels of a single bias variable (e.g., male vs. female) without attention to potential confounders, and do not quantify the importance of the bias variable. This article proposes to analyze bias in the output of NLP systems using multivariate regression models. They provide a robust and more informative alternative which (a) generalizes to multiple bias variables, (b) can take covariates into account, (c) can be combined with measures of effect size to quantify the size of bias. Jointly, these effects contribute to a more robust statistical analysis of bias that can be used to diagnose system behavior and extract informative examples. We demonstrate the benefits of our method by analyzing a range of current NLP models on one regression and one classification tasks (emotion intensity prediction and coreference resolution, respectively).

Downloads

Published

2022-08-11

Issue

Section

Articles