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Foreword to NEJLT Volume 8, 2022

Leon Derczynski, ITU Copenhagen, Denmark; ld@itu.dk

Abstract An introduction to the Northern European Journal of Language Technology in 2022

1 Introduction
This introduces the second of two volumes of the
Northern European Journal of Language Technology, or
NEJLT, under a revised remit. We have expanded the
journal to carry excellent peer-reviewed works on nat-
ural language processing and computation linguistics
from across the world. This has been a success and it is
a delight to present these volumes 7 and 8.

Of note, in addition to what we have come to expect
of NLP venues, the also offers:

• An editorial board of leading action editors from
institutes across the world;

• A focus on global languages;

• The adoption of specific paper types, each with
their own review form, to increase the chances
that authors get a review that suits them, and
that review does not become overfit to the more
common types of submitted papers (Derczynski
and Bender, 2021);

• Moves to include NEJLT in the ACL Anthology;

• Welcoming of reviews from previous venues to be
submitted with papers, to reduce the number of
rounds needed for decisions;

• The addition of a “letter” format submission, for
short contributions with rapid review.

This has taken a significant of work, especially from
action editors and reviewers, andmuch trust, especially
on behalf of authors submitting their hard work to a
newer venue. I am extremely grateful to thosewho have
placed their energy and willpower into pushing NEJLT
to where it is now.

In 2022, NEJLT received seventeen submissions and
published eight manuscripts. Of these eight, the lan-
guages covered by their research included Abui, Al-
gerian Judeo-Arabic, Bardi, Basque, Chintang, Dutch,

Finnish, German, Greek, Haiki, Hausa, Hungarian,
Ik, Indonesian, Italian, Japanese, Korean, Latin, Lezgi,
Mandarin, Matsigenka, Meithei, Nuuchahnulth, Old
Javanese, Polish, Russian, Spanish, Swedish, Tsova-
Tush, Turkish, Wambaya, Yup’ik, and English. Publica-
tion authors held affiliations in Germany, Israel, Nor-
way, Sweden, the UK, and the USA. So if one is in any
doubt as to NEJLT’s natural as not a Northern European
journal but a global one, please look no further.

The journal continues to offer fast review, free sub-
mission, publication, and reading, and a top-quality
board. We look forward to fair and fast review of even
more exciting papers in 2023. To learn more, please visit
www.nejlt.org.

References
Derczynski, Leon and Emily M Bender. 2021. To-
wards better interdisciplinary science: Learnings
from COLING 2018. Technical report, IT University
of Copenhagen.

Northern European Journal of Language Technology

https://www.nejlt.org


Task-dependent Optimal Weight Combinations for Static Embed-
dings

Nathaniel R. Robinson, Carnegie Mellon University, USA nrrobins@cs.cmu.edu

Nathaniel Carlson, Brigham Young University, USA natec18@byu.edu

David R. Mortensen, Carnegie Mellon University, USA dmortens@cs.cmu.edu

Elizabeth Ann Vargas, Brigham Young University, USA elizag17@byu.edu

Thomas Fackrell, Brigham Young University, USA tfac1997@byu.edu

Nancy Fulda, Brigham Young University, USA nfulda@cs.byu.edu

Abstract A variety of NLP applications use word2vec skip-gram, GloVe, and fastText word embeddings. These models learn two
sets of embedding vectors, but most practitioners use only one of them, or alternately an unweighted sum of both. This is the
first study to systematically explore a range of linear combinations between the first and second embedding sets. We evaluate
these combinations on a set of six NLP benchmarks including IR, POS-tagging, and sentence similarity. We show that the default
embedding combinations are often suboptimal and demonstrate up to 12.5% improvements. Notably, GloVe’s default unweighted
sum is its least effective combination across tasks. We provide a theoretical basis for weighting one set of embeddings more than
the other according to the algorithm and task. We apply our findings to improve accuracy in applications of cross-lingual alignment
and navigational knowledge by up to 15.2%.

1 Introduction

Static word embeddings are used in a broad range of
NLP applications, including conversational gameplay
(Andrus and Fulda, 2020), text categorization (Minaee
et al., 2021; Mitra et al., 2016), translation (Sabet et al.,
2020; Jansen, 2017; Pourdamghani et al., 2018), affor-
dance detection (Fulda et al., 2017a), and semantic anal-
ysis (Hamilton et al., 2016). In addition to using static
embeddings directly, researchers often combine them
with contextualized models or use them for embedding
initialization of downstream tasks (Kocmi and Bojar,
2017) such as summarization (Lin et al., 2021) and neu-
ral machine translation (Qi et al., 2018). The persis-
tence of static embeddings is due in part to their ease of
use and low computational requirements. Rather than
needing a forward pass through a neural network to em-
bed each word, pre-trained embeddings can be stored
in memory and retrieved with complexity 𝑂 (1).1 §4.2
outlines more advantages of static embeddings.

1This is assuming a default Python or Java hash map. The worst
case would be 𝑂 (𝑛) with vocabulary size 𝑛, in the case of a trivially
slow hash map, which is still well under transformer-based embed-
ding retrieval complexity.

We propose an augmentation of three popular em-
beddingmethods (word2vec skip-gram, GloVe, and fast-
Text). Word2vec skip-gram (Mikolov et al., 2013a) is a
neural word context predictor, GloVe (Pennington et al.,
2014) is a log-bilinear model that includes global con-
text information with a co-occurrence matrix, and fast-
Text (Bojanowski et al., 2017) incorporates sub-word in-
formation via character n-grams with a skip-gram ob-
jective to expedite training and handle unseen words.
More details about these algorithms are in §2. Each
of them produces two separate embedding sets ("tar-
get" and "context", see Figure 1) that we combine in
previously unexplored ways. We show that these typ-
ically unexplored target and context combinations re-
veal much about embedding effectiveness. Our key con-
tributions are as follows:

1. We provide a theoretical and empirical analysis of
static embedding performance across weighted
linear combinations of embedding sets ("target"
and "context").

2. We generate 126 embedding sets from 6 corpora
and show that the default target/context combi-
nation for each embedding algorithm is often sub-
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Figure 1: Illustration of "target" vectors (black lines, left)
and "context" vectors (blue lines, right) produced by
the word2vec skip-gram algorithm. Similar embedding
pairs exist for fastText and GloVe. These are sometimes
called "in" and "out" weights, respectively.

optimal.
3. We demonstrate improvements on analogies, tex-

tual similarity, IR, POS-tagging, cross-lingual
alignment, and robotics navigation via embed-
ding combinations and provide best practice rec-
ommendations.

We demonstrate up to 12.5% improvements over
baseline performance on a diverse set of NLP bench-
marks by combining target and context vectors. (See
§5.) We analyze embeddings statistically and show that
(1) word2vec target vectors encode better word-to-word
relationships while context vectors are better suited for
bag-of-words representations, (2) GloVe default vectors
perform well on tasks for which they were tuned but
under-perform generally, and (3) fastText target vectors’
sub-word encodings are useful in many tasks but coun-
terproductive for bag-of-words representations. (See
§6.) Finally, in §7 we employ our methods practically
to improve performance on MUSE (Lample et al., 2018)
cross-lingual alignment by 0.69-1.56% and navigational
robotics benchmarks by up to 15.2%

2 Background
We overview three common static embedding algo-
rithms: word2vec skip-gram with negative sampling,
fastText, and GloVe. Each of these algorithms has the
same output: a set of embedding vectors, each corre-
sponding to a word in a vocabulary. We outline applica-
tions that employ these different algorithms, but note
that any task that uses vectors from one of these algo-
rithms could just as feasibly use the vectors from an-
other of them.

Mikolov et al.’s (2013a) word2vec skip-gram
model learns embeddings as a neural regression prob-
lem: predicting each word’s context. Each word in ques-
tion is called the target, and its neighbors are called
context. The model learns two sets of embeddings,
corresponding to target and context words, though
only the first is typically used. Word2vec is employed

in many tasks, including measurement of MWE can-
didates (Pickard, 2020) and epidemic-related twitter
stream classifications (Khatua et al., 2019). In our ex-
periments we used skip-gram with negative sampling
(rather than Mikolov et al.’s CBOW model) because
of its comparability to GloVe and fastText. (See §3.)
Throughout the text we refer to this algorithm simply
as "word2vec."

The fastText algorithm (Bojanowski et al., 2017)
integrates sub-word information into the skip-gram
framework. It embeds character n-grams, and a word’s
embedding is the sum of its sub-word vectors. The con-
text vectors are not composed of sub-words. Many ap-
plications use fastText, including hyperbolic word repre-
sentations (Zhu et al., 2020) and low-resource sentence
similarity (Khalid et al., 2021; Akhtar et al., 2017).

Popular GloVe embeddings (Pennington et al.,
2014) are used for sarcasm detection (Khatri and P,
2020), emotion detection (Gupta et al., 2021), and lex-
ical semantic analysis (Jain, 2020). GloVe’s log-bilinear
model learns two embeddings fromword co-occurrence.
By default, most public GloVe implementations sum the
embeddings evenly. However, our study shows that this
unweighted sum often does not maximize performance.
(See §5.)

Our work challenges the assumption that the de-
fault combinations or selections of target and context
vectors (target only for word2vec and fastText and an
unweighted sum for GloVe) are optimal for any task, or
even across tasks in general. We methodically explore a
spectrum of target/context combinations for each algo-
rithm and show that the default embedding selection is
often not the best.

Although not directly studied here, other static
embedding algorithms such as ConceptNet Number-
batch (Speer et al., 2017), hyperbolic word embeddings
(Zhu et al., 2020), and word2vec-CBOW (Mikolov et al.,
2013a) exist and merit study.

2.1 Contextual Embedding
The uses of static embeddings overlap with contextu-
alized embedding models such as BERT (Devlin et al.,
2019), ELMo (Peters et al., 2018), BART (Lewis et al.,
2020), and others (Liu et al., 2019b; Robinson et al.,
2021). These networks are adaptable to a variety of NLP
tasks, from translation evaluation (Yuan et al., 2021;
Zhang et al., 2019) to semantic tagging (Liu et al., 2019a).
Some researchers have scrutinized them for consuming
too many resources and lacking interpretability (Ben-
der et al., 2021; Brown et al., 2020; Strubell et al., 2019).
Static embeddings are employed instead in many prac-
tical NLP tasks because they are fast, computationally
inexpensive, and intuitive.

Static embeddings are particularly suited to tasks
that restrict predictions to a candidate set, such as word
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analogies, since embeddings from these smaller mod-
els have a defined vocabulary that can be queried in
nearest-neighbor search. Dufter et al. (2021) verified
this trend for question answering and advocated for
use of static embeddings because of their low compu-
tational cost: “‘green’ baselines are often ignored, but
should be considered when evaluating resource-hungry
deep learning models.”

2.2 Prior Investigations of Context and
Target Combinations

We are not the first to combine target and context em-
beddings. As mentioned in §2, GloVe implementations
(Pennington et al., 2014) sum them by default. Nalis-
nick et al. (2016) used target vectors for queries and con-
text vectors for documents in information retrieval (IR).
They did not explore summing the two vector sets how-
ever.

Fulda and Robinson (2021) explored concatenating
and summing word2vec skip-gram target and context
vectors for analogies and sentence similarity. They
found that with sufficiently large training corpora,
target-context sums can outperform target embeddings
(the default) and target-context concatenations. Their
analysis reveals a theoretical advantage for summed
embeddings in analogy tasks with dot-product-based
similarity metrics: with target-context sums, the dot
product between vectors for words 𝑎 and 𝑏 is (𝑡𝑎 +
𝑐𝑎)𝑇 (𝑡𝑏 +𝑐𝑏) = 𝑡𝑇𝑎 𝑡𝑏 +𝑡𝑇𝑎 𝑐𝑏 +𝑐𝑇𝑎 𝑡𝑏 +𝑐𝑇𝑎 𝑐𝑏 , where 𝑡 and 𝑐 are
target and context vectors. This is significant because,
as Nalisnick et al. (2016) point out, the outer terms of
this expression encode paradigmatic relations (e.g. ma-
son and carpenter), while the inner terms encode syn-
tagmatic relations (e.g. mason and stone). These differ-
ent relations are relevant in analogies likemason : stone
:: carpenter : wood.

Our work expands on and differs from these exam-
ples in four main ways: (1) we systematically explore
multiple combinations of target and context vectors (e.g.
80% target added to 20% context, which we show in §6.1
may be conceptually closer to a true sum), (2) we apply
these changes uniformly across word2vec, GloVe, and
fastText on multiple training corpora and a variety of
NLP tasks, (3) we provide a theoretical analysis of the
properties of target and context vectors by task type,
and (4) we identify a set of best practices and recom-
mended embedding combinations for practitioners ap-
plying these algorithms in the wild.

3 Theoretical Motivation
This section shows that while the target and context
vectors produced by theGloVe algorithm are fundamen-
tally equivalent to each other, the same does not hold

true in the cases of word2vec and fastText. This in-
sight informs andmotivates our analysis of various con-
text/target embeddings in §6.

Word2vec Skip-gram Training The skip-gram
model processes a corpus, considering each word as a
target and its surrounding words within a window size
𝑤 as context. For each step, the weights are updated
for two objectives:

• Objective 1: Maximize the dot product between
the target embedding for the target word and the
context embeddings for its neighbors

• Objective 2: Negative sampling, or minimize the
dot product between the target embedding for
the target word and the context embeddings of
random words

Theorem 1 shows that objective 1 cannot account for
any difference between target and context space. We
outline terminology for the theorem below.

Terminology for Theorem 1: Let the operation
𝑐𝑙𝑜𝑠𝑒 (𝑣1, 𝑣2) indicate an action: that of model weight
updates to increase the dot product between vectors 𝑣1
and 𝑣2. All of the model’s actions for objective 1 as it
processes the corpus once are

{{𝑝 ( | 𝑗 − 𝑖 |)𝑐𝑙𝑜𝑠𝑒 (𝑡𝑖 , 𝑐 𝑗 )}𝑖+𝑤𝑗=𝑖−𝑤,𝑗≠𝑖 }𝑀−1
𝑖=0 (1)

where 𝑡𝑖 and 𝑐𝑖 are the target and context embedding
for the word appearing in the 𝑖th position of the cor-
pus, and 𝑀 is the corpus length. The function 𝑝 (ℓ) is
a Bernoulli c.d.f. that returns 0 with probability (ℓ−1)

𝑤
.

This expresses how the skip-gram model probabilisti-
cally drops objective 1 actions for context words far
from the target. We require that 𝑐𝑙𝑜𝑠𝑒 (𝑣𝑖 , 𝑣 𝑗 ) represent
no action if either 𝑖 or 𝑗 is below zero or greater than
𝑀 − 1. Note that the arguments of 𝑐𝑙𝑜𝑠𝑒 may be com-
muted.

Given Theorem 1, all of the differences between tar-
get and context structure are due to objective 2. We
show how common word context vectors behave like
magnets for target vectors to cluster around, because
of objective 2 action distribution.

Let 𝑓 𝑎𝑟 (𝑣1, 𝑣2) indicate the action of weight updates
to decrease the dot-product between 𝑣1 and 𝑣2 (the op-
posite of 𝑐𝑙𝑜𝑠𝑒). All objective 2 actions from one read-
ing of the corpus are

{{𝑓 𝑎𝑟 (𝑡𝑖 , 𝑐𝑥 𝑗
)}5𝑟−1

𝑗=0 }𝑀−1
𝑖=0 (2)

where 5 is the set number of negative samples per word,
𝑟 is a random integer 1 ≤ 𝑟 ≤ 𝑤 that depends on the
output of 𝑝 in Equation 1, and each 𝑐𝑥 𝑗

denotes the
context vector for a word at index 𝑥 𝑗 drawn randomly
from a distribution 𝑋 of square-rooted word frequen-
cies. Let 𝑋True be the distribution of actual word fre-
quencies from the corpus. When sampling from square-
rooted word frequencies 𝑋 , the most common words in
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Theorem 1. Objective 1 does not cause any differences between target and context vector construction.

Proof. Define 𝑓 (𝑣𝑖 , 𝑣 𝑗 ) := 𝑝 ( | 𝑗 − 𝑖 |)𝑐𝑙𝑜𝑠𝑒 (𝑣𝑖 , 𝑣 𝑗 ) for convenience, and note 𝑓 (𝑣𝑖 , 𝑣 𝑗 ) = 𝑓 (𝑣 𝑗 , 𝑣𝑖 ). The set of total objective
1 actions performed by the model as it reads the corpus once is then

{{𝑓 (𝑡𝑖 , 𝑐 𝑗 )}𝑖+𝑤𝑗=𝑖−𝑤,𝑗≠𝑖 }𝑀−1
𝑖=0

= {{𝑓 (𝑡𝑖 , 𝑐 𝑗 )}𝑖−𝑤≤ 𝑗≤𝑖−1, {𝑓 (𝑡𝑖 , 𝑐 𝑗 )}𝑖+1≤ 𝑗≤𝑖+𝑤}𝑀−1
𝑖=0

= {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )} 𝑗−𝑤≤𝑖≤ 𝑗−1, {𝑓 (𝑐𝑖 , 𝑡 𝑗 )} 𝑗+1≤𝑖≤ 𝑗+𝑤}𝑀−1
𝑗=0

= {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )} 𝑗−𝑤≤𝑖≤ 𝑗−1}𝑀−1
𝑗=0 ∪ {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )} 𝑗+1≤𝑖≤ 𝑗+𝑤}𝑀−1

𝑗=0

= {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖+1≤ 𝑗≤𝑖+𝑤}𝑀−2
𝑖=−𝑤 ∪ {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖−𝑤≤ 𝑗≤𝑖−1}𝑀−1+𝑤

𝑖=1

= {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖+1≤ 𝑗≤𝑖+𝑤}𝑀−1
𝑖=0 ∪ {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖−𝑤≤ 𝑗≤𝑖−1}𝑀−1

𝑖=0

= {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖−𝑤≤ 𝑗≤𝑖−1}𝑀−1
𝑖=0 ∪ {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖+1≤ 𝑗≤𝑖+𝑤}𝑀−1

𝑖=0

= {{𝑓 (𝑐𝑖 , 𝑡 𝑗 )}𝑖+𝑤𝑗=𝑖−𝑤,𝑗≠𝑖 }𝑀−1
𝑖=0 ,

which is the original expression with the roles of 𝑡 and 𝑐 vectors reversed. Therefore 𝑐 and 𝑡 are reversible without
changing the total objective 1 actions performed by the model. I.e. their roles are identical in this process. □

the corpus will be less frequent, and the least common
words will be more frequent, than when sampling from
𝑋True. In Equation 1, we have 𝑡𝑖 , 𝑐 𝑗 ∼ 𝑋True. However,
in Equation 2, we have 𝑡𝑖 ∼ 𝑋True but 𝑐𝑥 𝑗

∼ 𝑋 . This
means that the context vectors 𝑐 corresponding to fre-
quent words will appear more often in the 𝑐𝑙𝑜𝑠𝑒 func-
tion and less often in 𝑓 𝑎𝑟 (and context vectors for in-
frequent words will appear more often in 𝑓 𝑎𝑟 than in
𝑐𝑙𝑜𝑠𝑒). Therefore the target vectors will be biased to be
more similar to the context vectors of high frequency
words.

A brief analysis shows this. Let 𝑆100 be the 100 most
common words in a corpus from the vocabulary 𝑉 . For
word2vec embeddings trained on three corpora, (Web
Scraped, WikiReddit, and Wikipedia, described in §4.1)
we calculated the cosine scores between all target vec-
tors and the 100 context vectors for the words in 𝑆100,
scores1 = {cos(𝑡𝑣, 𝑐𝑠 ) : 𝑣 ∈ 𝑉 , 𝑠 ∈ 𝑆100, 𝑣 ≠ 𝑠} and the
corresponding scores where target vectors came from
𝑆100, scores2 = {cos(𝑐𝑣, 𝑡𝑠 ) : 𝑣 ∈ 𝑉 , 𝑠 ∈ 𝑆100, 𝑣 ≠ 𝑠}.
For each corpus, over 90% of the 100 highest scores
in scores1 ∪ scores2 were from scores1, indicating that
target vectors are clustered around common-word con-
text vectors (more so than context vectors are clustered
around common-word target vectors).

fastText vectors are trained using this same
paradigm butwith an additional difference between the
embedding sets that is likely more important in appli-
cations: target vectors are composed by summing sub-
word embeddings, while context vectors are not.

GloVe vectors are constructed differently than
word2vec or fastText. Their training objective
(
∑𝑉

𝑖,𝑗 𝑓 (𝑋𝑖, 𝑗 ) (𝑡𝑇𝑖 𝑐 𝑗 + 𝑏𝑖 + 𝑏 𝑗 − 𝑙𝑜𝑔(𝑋𝑖, 𝑗 ))2) is log-
bilinear for target and context vectors. Thus there
is no difference between target and context vector

construction, short of random initialization. Analyses
of vector space clustering and magnitude for GloVe,
including the analysis described in the previous para-
graph and statistics outlined in Table 4, reveal no
notable differences between GloVe target and context
distributions.

4 Methodology

We conduct experiments to answer three core ques-
tions: (1) How does task performance vary across lin-
ear combinations of target/context vectors, and do the
default settings work generally well? (2) Is the pattern
of performance (as a function of target/context weight-
ings) similar in all three embedding algorithms? If not,
what are the differences? (3) Are optimal weighting
schemes data- and task-specific? If so, to what extent?

To answer these, we trained target and context em-
beddings for each of three algorithms (word2vec skip-
gram, GloVe, fastText) on six corpora. We then pro-
duced more embeddings by combining each pair of tar-
get t and context c as follows:2 .8𝑡 + .2𝑐 , .6𝑡 + .4𝑐 , 𝑡 + 𝑐 ,
.4𝑡 + .6𝑐 , and .2𝑡 + .8𝑐 . We refer to these combinations
respectively as 80:20-sum, 60:40-sum, true sum, 40:60-
sum, and 20:80-sum, in addition to target and context
vectors alone. We generated 126 embedding sets total
(six training corpora × three embedding algorithms ×
seven weighted sums). This spread of linear combina-
tions has not been studied previously.

We insist that the target and context weights sum
to 1 for the sake of uniformity and clarity in drawing

2𝑡 + 𝑐 is a stand-in for .5𝑡 + .5𝑐 , since our NLP tasks rely on
magnitude-agnostic cosine similarity. We use 𝑡 + 𝑐 to compare di-
rectly with existing methods.
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conclusions from our experiments. Since our NLP appli-
cations employ magnitude-agnostic cosine distance as
a similaritymetric, allowing theweights to range from 0
to 1 is largely equivalent to letting them range from 0 to
𝑁 for any positive real number 𝑁 . We set 𝑁 = 1 across
all experiments to allow fair comparisons of weight val-
ues. It is worth noting that weights could also be nega-
tive, a possibility that is beyond the scope of our current
study but that could be explored in future work.

Linear combinations are a form of summation. Sum-
mation is an established method for combining vec-
tor information, as discussed in §2.2. The fastText al-
gorithm relies on sums of subword target vectors (Bo-
janowski et al., 2017). GloVe vectors are often target-
context sums by default (Pennington et al., 2014). Tar-
get and context vectors ought to be reasonably well
aligned for summation, since the objective of a static
embedding model is to increase the dot products be-
tween target and context vectors, and the dot product is
based on component-wise multiplication. This provides
a theoretical motivation for our focus on target-and-
context vector summation. Note, however, that sum-
mation is not the only possible way to combine target
and context embeddings. As discussed in §2.2, Fulda
and Robinson (2021) explored concatenating the embed-
dings instead. However, they found that summation
yielded better results, a conclusion that they verified
both theoretically and experimentally.

Despite the theoretical basis for their alignment, tar-
get and context vectors may not be perfectly aligned for
summation in practice. One could employ a more intri-
cate approach to align them, such as a linear mapping
or an encoder/decoder reconstruction method such as
MUSE (Lample et al., 2018). This is a potentially promis-
ing area of future research.

Note that our experimentation over a range of seven
different target/context weighting values is compara-
ble to performing a course grid search for this parame-
ter in each task. Another more computationally expen-
sive and task-specific method to tune this parameter is
meta-learning. Our objective in our main experiments
is to learn generalizable principles across a variety of
tasks, which may be of value to other researchers, for
which purpose we determined that this grid search ap-
proach would suffice. However, we do explore an appli-
cation of optimizing the weighting via differentiation.
See §7.2 for analysis.

Training hyperparameters We used embedding di-
mension 300. For GloVe: we used window size 10, min-
imum word count 5, and 25 training iterations. These
have been shown to achieve optimal results (Penning-
ton et al., 2014). The "minimumword count" mentioned
is minimum frequency for a word in the corpus to in-
clude it in the model’s vocabulary. For fastText: we

used window size 10, minimum word count 5, 5 train-
ing epochs, and 3-6 character n-grams, as standard (Bo-
janowski et al., 2017). For word2vec: we used window
size3 5 and 3 epochs, as recommended by Fulda and
Robinson (2021). Due to the Web Scraped corpus’ size
and computing restraints, we opted for minimum word
count 100.

4.1 Training Corpora

Our six training corpora are in Table 1. The Web
Scraped corpus was generated to imitate the unre-
leased WebText data used to train OpenAI’s GPT-2 (Pe-
terson, 2019; Radford et al., 2019). The Wikipedia cor-
pus is a collection of all text on Wikipedia from 2004.
The WikiReddit dataset is the concatenation of the
Wikipedia corpus with text from Reddit. The Toronto
Books Corpus contains 11,038 books collected by the
University of Toronto (Zhu et al., 2015). The smallest
corpus consists of classic books from Project Gutenberg
(Lahiri, 2014). Spanish Wikipedia was the dump from
October 20, 2021 collected using the WikiExtractor tool
(Attardi, 2015).

We had the majority of these corpora on hand and
used them to reduce computational expense. Though
the NER task could potentially have benefited from us-
ing newer corpora, such as a more recent download of
English Wikipedia, we did not see a clear theoretical
impact from using newer corpora on the other evalua-
tion tasks. We provide a brief analysis of the interaction
between embedding performance and corpus choice in
6.4. An in-depth analysis of this interaction is outside
the scope of this paper, but we recommend it as an area
of further study.

In Table 2 we show the vocabulary sizes for the em-
bedding sets trained using the three embedding algo-
rithms and the six training corpora in our experiment
set.

Corpus Size Tokens
Web Scraped 59.0 GB 9.6B
WikiReddit text 21.0 GB 4.1B
Wikipedia text 16.7 GB 2.8B
Toronto Books 4.6 GB 984M
Classic Books 20.3 MB <1M
Spanish Wikipedia 4.5 GB 667M

Table 1: Training corpora (five English, one Spanish).
Novel corpora will be released upon acceptance.

3Our word2vec implementation denotes unidirectional window
size. This value is equivalent to the bi-directional window size 10 for
fastText and GloVe.
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word2vec fastText GloVe
Web Scraped 408K 3.36M 3.36M
WikiReddit text 530K 2.51M 2.51M
Wikipedia text 432K 1.95M 1.95M
Toronto Books 92.3K 315K 315K
Classic Books 5.69K 36K 36K
Spanish Wikipedia 347K 2.24M 2.24M

Table 2: Vocabulary sizes for each embedding set
trained on each of the corpora, using the hyperparam-
eters delineated in §4 (using 3 significant figures)

4.2 Evaluation Tasks

We evaluated each embedding set on six NLP tasks cho-
sen to represent a broad sampling of static embedding
uses, conducting over 650 evaluations. We describe task
details below for reproduction.

We employed two analogy question evaluations.
The Google Analogy Test Set (Mikolov et al., 2013c,b)
is a common embedding evaluation benchmark. It con-
tains 19,544 analogy questions in 14 categories: six se-
mantic (e.g. family relationships, countries and capi-
tals) and eight grammatical (e.g. adjectives with su-
perlatives). GloVe vectors were tuned for this bench-
mark. Turney’s (2006) set of SAT questionswas used
by Fulda and Robinson (2021) to evaluate static embed-
dings. It contains 374 analogy questions with semantic
relationships like the mason/carpenter example in §2.2.

Selection of analogy candidates: Given analogy
A : B :: C : D, in the Google test, embeddings predict D
given A, B, and C from 𝑑 = arg max𝑑 ′∈𝑆 cos(𝑏−𝑎+𝑐, 𝑑 ′),
where 𝑎, 𝑏, and 𝑐 are vectors corresponding to their re-
spective words, and 𝑆 is the set of all vectors in the
embedding. 𝑐𝑜𝑠 denotes cosine similarity. In the SAT
test, embeddings predict C and D given A and B from
𝑐, 𝑑 = arg max(𝑐′,𝑑 ′ ) ∈𝑆 cos(𝑏 − 𝑎, 𝑑 ′ − 𝑐′), where 𝑆 is a
set of four multiple-choice candidate pairs (𝑐𝑖 , 𝑑𝑖 ). To il-
lustrate more intuitively, say we have the example anal-
ogy mason : stone :: carpenter : wood. In the Google
test paradigm, our task is to predict "wood" given "ma-
son," "stone," and "carpenter." And we do this by finding
the word in our vocabulary whose vector is closet to
𝑣𝑠𝑡𝑜𝑛𝑒 − 𝑣𝑚𝑎𝑠𝑜𝑛 + 𝑣𝑐𝑎𝑟𝑝𝑒𝑛𝑡𝑒𝑟 . In the SAT paradigm, we
are given the pair "mason" and "stone," along with a
list of multiple-choice options, each containing a pair
of words and one of which contains the pair "carpen-
ter" and "wood." We select the option whose pair-wise
difference vector is closest to the difference vector for
the given pair. Because of the high propensity of es-
oteric words in SAT analogies, we skip SAT questions
with out-of-vocabulary words.

SemEval 2013 (Wilson et al., 2013) is a sentence
textual similarity (STS) set of 1,379 sentence pairs with
human-given similarity scores. We sum word vectors
to obtain sentence vectors, then measure how well pair-

wise cosine similarity correlates with gold similarity us-
ing Spearman’s rho.

We adapt Nalisnick et al.’s (2016) IR method, the
Dual Embedding Space Model (DESM). We collected
36,701 queries and 3.2 million documents from Ni
(2015). Each query is mapped to a list of 100 rel-
evant documents with relevance scores. For query-
document similarity we calculate a modified DESM

score DESM(𝑄,𝐷) = 1
|𝑄 |

∑
𝑞∈𝑄

𝑞𝑇𝐷

| |𝑞 | | | |𝐷 | | , where 𝑄 and

𝐷 are matrices of vectors for the query and document
words,4 respectively, and 𝐷 = 1

|𝐷 |
∑

𝑑∈𝐷 𝑑 . We rate
embeddings by average Spearman’s Rho correlation be-
tween DESM scores and ground truth document rele-
vance scores across queries.

Our method for POS tagging is adopted from Pre-
mjith (2019). We predict eight POS categories (noun, ad-
jective, adverb, adposition, determiner, pronoun), using
the highest-performing of five classifiers: K-neighbors,
decision tree, random forest, multi-layer perceptron,
and Gaussian naive Bayes. These are the models and
parameters used by Premjith (2019). In recent years,
other models such as LSTM and encoder/decoder mod-
els have been commonly used for POS-tagging. We
opted to keep the NLP applications we gathered as
close to their original form as possible, for the sake
of uniformity, and as such we do not augment the
model list with these additional architectures. We ac-
knowledge that a POS-tagging embedding evaluation
employing LSTM and seq2seq models could be worth-
while in future studies. In all cases, embedding vectors
were used as input to the tagging models. We evaluate
both classifiers and embeddings with POS prediction
weighted-averaged F1 score.

Our cross-lingual alignment task is adapted from
Jansen (2017). We train a transition matrix between
English and Spanish Wikipedia embeddings on a 2894-
word English-Spanish dictionary with a 64-16-20 train-
dev-eval split. We train for 10 epochs with learning rate
.001 and the Adam optimizer (Kingma and Ba, 2015).
We rate embeddings by validation accuracy. In each
test, the settings of Spanish and English embedding
training are identical (same embedding algorithm and
target/context combination).

Tasks summary: This set of evaluations contains
both common embedding benchmarks and practically
relevant tasks. Static embeddings are particularly
suited to multiple of these tasks because they involve
context-less word relationships and proximity searches
across stored embedding sets.

4Excluding stopwords such as "and," "that," or "may", as defined by
SpaCy model en_core_web_sm. See https://spacy.io/models/en.
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5 Results

Our results show that the default settings of each al-
gorithm for combining target and context vectors do
not always perform best, and often perform worst, on
NLP tasks. Figure 2 shows the performance of 7 tar-
get/context combinations across the 5 English corpora
and 3 embedding algorithms.

In summary, for word2vec, context vectors per-
form best on IR, but target vectors are best on SAT and
Google analogy tasks and cross-lingual alignment, and
summed vectors excel in STS.GloVe vectors exhibit two
major trends. Summed vectors perform best in STS
but worst in other tasks: SAT analogies, POS tagging,
and IR. fastText target vectors perform best on Google
analogies and POS tagging, but in IR and cross-lingual
alignment, summed vectors excel.

Table 3 shows the percentage improvement from
tuning the target/context weighting over default
weighting for each embedding algorithm and evalua-
tion task. These values represent the improvement
from the highest performance using the default tar-
get/context setting to the highest performance after our
search over linear combinations. We see the largest per-
formance increase, 12.5%, in the case of word2vec on
the STS task.

Patterns across target and context combinations are
dependent on the NLP task and algorithm. This sug-
gests that tuning the target/context summation weight
(rather than using defaults) can improve performance
markedly. For example, GloVe’s default true sum does
well on the STS task but under-performs on SAT anal-
ogy, POS, and IR. Word2vec and fastText’s default tar-
get embeddings perform well on the Google Analogy
and POS tasks but under-perform on the IR task.

Performance trends are generally consistent across
our five training corpora. There are some notable excep-
tions to this generality, which we discuss in §6.4.

Average Effect of Target/Context Weighting
Across Corpora and Tasks Figure 3 shows the aver-
age performance of each algorithm across all corpora
and tasks. Results suggest fastText performs optimally
with a 20:80 target/context combination rather than
the default setting of 100% target. GloVe performance
is highest at 80:20 and 20:80. These results suggest that
a 20:80 or 80:20 combination of target and context may
be an advantageous default for future embedding sets,
especially in settings where hyperparameter tuning is
not possible. (E.g. because embeddings are pre-trained
or due to computational constraints.) In §6 we analyze
results, and in §7 we present practical applications for
these observations.

6 Analysis
This section provides theoretical backing for the ob-
served performance of target vs. context vectors on spe-
cific types of tasks. We analyze the advantages of using
weighted target and context combinations for specific
use cases and offer recommendations for best practices
in static embedding research.

6.1 Word2vec Analysis
Word2vec target vectors outperform their context coun-
terparts in analogy tasks, implying that the phenomena
described in §3 encode stronger word relationships in
target space. We show how word2vec target vectors
are advantaged in word-search style tasks like analo-
gies and cross-lingual alignment, while context vectors
have the advantage in document-level tasks like STS
and IR.

Because context vectors do not attract and repel
target vectors with equal frequency (see §3), there is
higher variability in their length; vectors likely become
large to produce high positive dot-products with neigh-
bors or low negative dot-products with non-neighbors.
Figure 4 shows that the norms of context vectors are an
order of magnitude larger than those of target vectors.
This justifies the use of weighted sums. An unweighted
addition of small target and large context vectors re-
sults in a set that resembles context space. An 80:20-
sum may be closer to the ideal of an even sum.

Further analysis suggests that context vectors are
ill-equipped for some semantic tasks. Table 4 shows
that context space has higher inertia in k-means clus-
tering, indicating that it is harder to cluster into mean-
ingful semantic groups.

Further statistics gathered from word2vec target
and context spaces are surprising. (See Table 4.) The
extremely small mean, minimum, and maximum co-
sine distances from the centroid vector and the small
standard deviation imply that context vectors are clus-
tered tightly in cosine distance around a centroid. The
high skewness and extremely high kurtosis indicate ex-
istence of extreme outliers. These properties increase
the likelihood of selecting an incorrect vector in tasks
that search the vocabulary space, such as analogies and
cross-lingual alignment (where context vectors perform
worst). Target vectors show none of these disadvan-
tages.

In contrast, although context vectors performworse
on these word-search tasks, they are well-suited to
tasks in which word vectors within a sentence or doc-
ument are summed to form bag-of-words representa-
tions, such as STS or IR. Context vectors’ more vari-
able norms play to their advantage here, making them
preferable to target vectors. Table 5 shows how con-
text vectors for stop words (defined by SpaCy model
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Figure 2: Algorithm performance grouped by task. X-axis ticks correspond left to right to (target, context) weightings
of (1.0,0.0), (0.8,0.2), (0.6,0.4), (0.5,0.5), (0.4,0.6), (0.2,0.8), and (0.0,1.0). Results for the smallest corpus are omitted when
they are so poor that they impair the visible contrast between other scores.

SAT Ana. Google Ana. STS IR POS EN-ES

word2vec 0% 0% 12.5% 5.27% 0% 0%
fastText 4.39% 0.2% 3.90% 1.52% 0% 9.72%
GloVe 5.22% 0.9% 0% 3.00% 8.8% 2.52%

Table 3: Percentage improvement by target/context weight tuning, over default target/context weighting, for each
embedding algorithm and task shown in Figure 2. Improvement of 0% indicates that the default weighting performed
best.

en_core_web_sm) are smaller than average. This
equips context vectors for tasks involving sums of word
vectors. It means that vectors carrying less semantic
information will be play a less significant role in bag-of-
words sentence representations, which will then be less
noisy and more closely resemble the vectors for their
meaningful keywords.

6.2 fastText Analysis

The fastText algorithm constructs vectors in a similar
way to word2vec. However, fastText vectors display
different performance patterns from word2vec across
tasks. Recall from §3 that fastText target vectors (and
not context) benefit from sub-word information. This
seems to play a large role in their performance. Sub-
word information is useful in POS-tagging, where En-
glish morphology can indicate part of speech, and
Google analogies, which involve both derivational and
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Figure 3: Average Z-scores (standard deviations from
the mean) across all training corpora and all tasks in
Figure 2.

w2v w2v GloVe GloVe fT fT
tgt ctx tgt sum tgt ctx

mean 0.74 0.03 0.76 0.73 0.53 0.29
std. dev. 0.18 0.03 0.20 0.23 0.06 0.13
skewness -0.04 7.63 -0.18 -0.12 0.22 0.75
kurtosis -0.31 1e+2 0.06 -0.18 0.15 0.61
min. 0.16 3e-3 0.06 0.04 0.21 2e-3
max. 1.36 0.96 1.90 1.89 0.87 1.26
mode. 1.15 0.46 1.50 1.67 0.56 1.10

inertia (1e6) 1.13 5.31 3.73 11.0 24.8 28.3

Table 4: Statistics on cosine distances from
each vector to centroid for embeddings trained on
Wikipedia, and average inertia for k-means clustering
over 6 values of k (𝑘 ∈ {5, 10, 15, 20, 25, 30}).

w2v tgt w2v ctx

Stop word avg. norm 2.70 7.07
Content word avg. norm 2.22 19.66

Stop norm as % of content norm 122% 36.0%

Table 5: In context space (and not target), stop words
have smaller norms than other words.

inflectional morphological processes. It also appears
useful for semantic textual similarity whenever large
training corpora are used.

Interestingly, context vectors perform best in the

Figure 4: Norms of word2vec target and context vec-
tors trained on Wikipedia, ordered from most common
tokens to least

IR test, which involves summing the word vectors in
long documents to form (bag-of-words) document rep-
resentations �̄� . Since fastText target vectors are already
bag-of-subwords representations (as noted in §2), the
treatment of documents as large bags of unordered sub-
words may dilute the usefulness of the representation.

A particularly notable trend is performance on the
cross-lingual alignment task. As expected from its
widespread application to multilingual settings, fast-
Text outperforms GloVe and word2vec. But in contrast
to the conventional use of target vectors, target-context
sums are the best-performing combinations. (In §7.1
we apply these vectors to a similar application and find
80:20 sums to be the best combination.) We hypoth-
esize that this is because of morphological differences
between Spanish and English. Sub-word information is
useful for interpreting meaning in both languages, but
over-dependence on these characteristics may cause
failures due to distributional differences in morphology.
Analysis of these trends across more language pairs is
a topic for future research.

6.3 GloVe Analysis
As discussed in §3, GloVe target and context space are
structurally similar. As a result, GloVe performance
graphs in Figures 2 and 3 are mostly symmetrical. This
leaves the question of why sums perform well on some
tasks and poorly on others.

Recall from §4.2 that the Google Analogy Test is
composed of nine sub-tests of grammatical analogies
and five of semantic analogies. We analyzed vector per-
formance on a fine-grained breakdown of Google Anal-
ogy subsets and found that in individual sub-tests, per-
formance varies in a regular way: sums perform well on
semantic analogies and poorly on grammatical analo-
gies. Results from two sub-tests are in Figure 5. It
appears GloVe’s true sum vectors (its default) config-
ured to these semantic questions when the algorithm
was tuned on Google analogies, perhaps because the
two largest sub-tests in the test set are capital-country
and city-state relations. Observe the high accuracy
achieved by GloVe default on the semantic task in Fig-
ure 5 (90–98%). Trends suggest, however, that the de-
fault sum performs worse more generally: In grammat-
ical Google analogy sub-tests, SAT analogies, IR, and
POS. Analysis backs this finding: True sum space has
higher inertia in k-means clustering than target space
(see Table 4), suggesting it is more difficult to cluster
meaningfully, and it is the least robust GloVe combina-
tion (see Figure 3.)

6.4 Corpus Effect
Performance trends in our experiments are generally
consistent across training corpora. Because of the few
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Figure 5: Example GloVe results across embedding com-
binations for grammatical (left) and semantic (right)
analogies

exceptions to this generality and our primary focus on
target/context weighting, we did not conduct an in-
depth analysis of their causes. Here we note some ob-
servations briefly.

For fastText on SAT Analogies, Web Scraped and
WikiReddit exhibit different trends from the other cor-
pora. As Table 2 shows, these two corpora yield larger
vocabularies than the others. Since SAT analogies rely
on embeddings for less frequent vocabulary words, this
could be a cause for the trend difference.

We see an aberration from general trends in the
performance of fastText vectors trained with Toronto
Books on STS. The STS test consists of many pairs of
photo captions. The Toronto Books Corpus consists of
61.2% fiction books (Bandy and Vincent, 2021), which
is likely rich in descriptive language. The STS test suite
also contains answer comparisons and news captions.
Dialogue in fiction books could be beneficial for detect-
ing answer similarity. And non-fiction books may be
particularly helpful for news caption comparisons. It is
difficult to discern why these benefits would be man-
ifest in the case of fastText and with an aberrant tar-
get/context trend. Drawing more conclusions may re-
quire a more in-depth study into corpus effect on these
summed embeddings.

Note that in some experiments, the weighting of
target and context determines whether performance
from the Classic Books corpus can be comparable to
the other corpora. This suggests an opportunity for
target/context weight tuning to improve results in very
low-resource settings. We discuss this more in §7.4.

7 Applications
Based on our findings, we recommend that practi-
tioners tune the target/context embedding weight for
downstream applications. The following two exam-
ples demonstrate that by doing so, it is possible to im-
prove upon default vector performance using applica-
tions from published literature.

Note that our baselines differ from published re-
sults, which employed downloadable pre-trained em-
beddings that were extensively optimized. This ap-
proach yields high-quality results, but it does not
allow for comparison of target/context combinations
since only one combination is typically released online.
We therefore used our own embeddings, trained on
the Wikipedia corpus, to explore relative performance
across a spectrum of target/context combinations. We
encourage future practitioners to release both embed-
ding sets.

7.1 MUSE Cross-lingual Alignment
Cross lingual alignment is a popular approach to multi-
lingual text representations. Algorithms learn a trans-
formation matrix to map embeddings from one lan-
guage into another. Lample et al. (2018) accomplish this
via an unsupervised adversarial algorithm, MUSE.

Using Lample et al.’s methods, we present results
for different target/context combinations of fastText
vectors. We selected fastText for this experiment to
match Lample et al.’s (2018) implementation, and ad-
ditionally because fastText performed the best on su-
pervised cross-lingual alignment in §5 (the true sum
combination, to be precise). To score in this unsuper-
vised case, we query a fixed number of source word
embeddings andmeasure accuracy for correct target re-
trieval for 𝑘 = 1, 5, 10 nearest neighbors. In this task, we
found that the 80:20 sum outperformed all other com-
binations. See Table 6. Interestingly 20:80 sum and con-
text vectors perform significantly worse than the other
combinations we tested, suggesting that the absence
of the sub-word enriched target embeddings leads to
degradation of performance.

7.2 Harvesting Common-sense Naviga-
tional Knowledge for Robotics

In this section we present an additional recommen-
dation to practitioners. When optimizing for tar-
get/context weight via differentiation, take care with
the choice of objective function, and consider the com-
plexity of high-dimensional vector spaces.

Fulda et al. (2017b) used a novel distance metric
to extract navigational relationships between objects
for robotics applications, the Directional Scoring
Method (DSM). They evaluated this method on a
series of ground-truth object relations, contained
in the BYU Analogical Reasoning Dataset. (See
https://github.com/NancyFulda/BYU-Analogical-
Reasoning-Dataset.) Using word2vec skip-gram
vectors as the original authors did, we ventured to
find the optimal target/context weight 𝜆 ∈ [0, 1]
for this application (where for each word 𝑤 , the
embedding vector 𝑣𝑤 = 𝜆𝑡𝑤 + (𝜆 − 1)𝑐𝑤). We grid
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default 80:20 sum 60:40 sum 50:50 sum 40:60 sum 20:80 sum context

k=1 64.14% 65.70% 65.55% 63.69% 62.49% 58.02% 51.34%
k=5 81.02% 81.83% 81.75% 80.52% 79.56% 75.94% 69.56%
k=10 84.91% 85.60% 85.50% 84.57% 83.86% 80.72% 75.25%

Table 6: MUSE alignment accuracy percentages with fastText English and Spanish vectors. Best results are bold. The
80:20 combination outperforms all others.

searched over eleven 𝜆 values to maximize accuracy
(𝜆 ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}). The
default target vectors were quite effective for this
application. 𝜆 = 1.0 scored highest for 6 of the 11
analogy categories (accessing containers, affordance,
causation, containers, locations for objects, rooms for
containers). Results for the other 5 categories are in
Table 7.

rooms trash
belong objects tools treas. travel

default 6.21% 21.1% 3.57% 37.0% 17.6%
𝜆 GS 9.66% 21.5% 6.90% 52.2% 18.4%
𝜆 = 0.9 0.8 0.8 0.4 0.9

Table 7: DSM scores where 𝜆 grid search (GS) improved
performance. Default indicates 𝜆 = 1.

We found that optimizing 𝜆 via differentiation was
not effective. We constructed an objective, the sum of
directional scores for each of the ground-truth analogy
answers in a training set, 60% of analogical questions,
and maximized the objective over 𝜆. Because this ob-
jective minimized DSM-distance between ground truth
vectors and DSM-hypothesis vectors, the optimal value
of 𝜆 defaulted to the most tightly clustered vector space
available. In our case with word2vec, 𝜆 = 0 was se-
lected every time, since word2vec context vectors are
tightly clustered in DSM space. This did not maximize
the probability of choosing the correct vector.

Modifying the objective function by subtracting di-
rectional scores for all incorrect answers circumvented
this issue and allowed for more diverse selections of op-
timal 𝜆, but it still was not effective. We found that the
value of 𝜆 that maximizes DSM scores for all correct
answers and minimizes scores for all incorrect answers
does not necessarily result in higher answer accuracy,
regardless of whether we used a subset of questions
for training or the whole set. This is likely due to in-
tractable subtleties in high-dimensional vector geome-
tries, a phenomenon for further investigation.

The results from this application do not preclude
the use of differentiation or other meta-learning tech-
niques to tune the target/context weight 𝜆 for other
tasks. We strongly encourage such investigations. But
until further conclusions, we urge that objectives to op-

timize 𝜆 be attempted with caution and thorough veri-
fication.

7.3 Summary Recommendations
Our observations suggest that values in Table 8 may be
the most reasonable choices of target/context combina-
tions for each embedding algorithm and task. Because
even similar tasks may differ in nature, however, we
encourage all practitioners to optimize target/context
weights via grid search whenever possible.

While our recommendation is to tune/optimize, we
recognize that many researchers, especially those ap-
plying word embeddings in research areas outside of
computational linguistics, may not have the resources
to tune their own weight parameters. We therefore pro-
vide recommendations on which simple linear combina-
tions are broadly applicable to various task types.

7.4 Potential for Low-resource and Mul-
tilingual NLP

Our results suggest that tuning target/context weight
can, in some cases, elevate the performance of low-
resource embeddings to the level of higher-resource sys-
tems. One of the most promising areas for improve-
ment of static word representations is NLP for low-
resource languages. Many low-resource languages do
not have high-quality contextual embedding tools such
as BERT (Devlin et al., 2019) and lack the resources to
train data-hungry BERT-likemodels. Many of these lan-
guages rely on improvements in static embedding tech-
nologies for accurate representations in NLP.

Multiple of the word2vec, GloVe, and fastText ap-
plications listed in §1 and §2 are for low-resource do-
mains. Among the works referenced in this paper alone,
we find examples of static embeddings applied to tech-
nologies for Amharic, Azerbaijani, Belarusian, Bengali,
Galician, Gujarati, Hausa, Marathi, Punjabi, Somali,
Tamil, Telugu, Uighur, Urdu, Uzbek, Yoruba, and more
(Qi et al., 2018; Pourdamghani et al., 2018; Khalid et al.,
2021; Akhtar et al., 2017).

A major limitation of our study is that, given the
large number of independent variables we tested al-
ready, we were constrained to applications involving
English (and some with Spanish, another high-resource
language). Unfortunately, this limitation inhibits us
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word2vec fastText GloVe
word search tasks target target-heavy/true sums target/context

sentence textual similarity true sum target/20:80 sum true sum
bag-of-words representations context context-heavy sums target/context

semantic Google analogies target target-heavy/true sums true sum
grammatical analogies target target-heavy/true sums target/context

other analogies target target-heavy/true sums target/context
cross-lingual alignment target 80:20 sum/true sum 80:20 sum

POS tagging target/context target target-/context-heavy
overall target target/20:80 sum 80:20 sum/20:80 sum

Table 8: Recommended target/context embedding usage by task and embedding algorithm. The algorithm that per-
formed best on each task type in our experiments is bold. Practitioners are cautioned that even similar tasks may differ
in nature, and that the general trends indicated here may not hold in all use cases.

from drawing concrete conclusions about performance
trends and their dependence on training language. This
is a primary area of potential for future research. We
hope to see more targeted studies addressing the ef-
fectiveness of target/context weight tuning on low-
resource tasks, particularly for fastText vectors, which
are often used in multilingual settings. Since fastText
vectors formed by target-context sums combine mor-
pheme information with full word information, they
could be valuable in applications for morphologically
rich languages, such as Arabic, Finnish, andQuechua.

8 Conclusion

By leveraging unconventional combinations of target
and context vectors learned by GloVe, fastTest, and
word2vec, we achieve improvements of up to 12.5% on
common word embedding tasks such as POS-tagging
and IR, thus elevating the usefulness of these popular
and inexpensive word representations for NLP tasks.
Experiments with 126 embedding sets on six generic
tasks and two downstream applications show that tun-
ing the hyperparameter of target and context weight
for downstream tasks can improve performance signif-
icantly over default settings, increasing accuracy by
0.69% to 1.56% on MUSE cross-lingual alignment and
by up to 15.2% on navigational robotics benchmarks.

Analysis suggests that target-heavy word2vec com-
binations aremost suited to tasks involving single-word
relationships, while context vector information is use-
ful in summed sentence representations. We further ob-
serve that GloVe default settings perform best on tasks
for which GloVe was tuned but tend to perform poorly
on others, and that fastText target vectors excel in tasks
such as POS-tagging, where sub-word information is
particularly relevant. These findings reveal a disconnect
between themaximumpotential of static embedding al-
gorithms and the ways in which they are typically used.
In a majority of cases, the performance of pre-trained

word embeddings could be improved by tuning the tar-
get/context weight hyperparameter. Furthermore, be-
cause a target/context weighting is typically chosen
prior to the release of extensively pre-trained word vec-
tors, the possibility of exploring various target/context
weightings has typically not beenmade available to sub-
sequent researchers. In alignment with our results, we
urge those who design and train static word embedding
models to release both target and context vector sets.

The software and embeddings used in our experi-
ments will be released publicly under the MIT license.
Given the widespread use of GloVe, word2vec, fastText,
and other static embeddings, there is a need for deeper
understanding of target and context interactions. Direc-
tions of future work in this area include the semantic
content contained in context and target embeddings;
the interplay between embedding algorithm, corpus
size, and corpus genre; vector normalization methods
to avoid norm imbalance; distance metrics not based
on cosine similarity; and paired-embedding algorithms
where context and target spaces are used individually.
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Building Analyses from Syntactic Inference in Local Languages: An

HPSG Grammar Inference System
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Abstract We present a grammar inference system that leverages linguistic knowledge recorded in the form of annotations in

interlinear glossed text (IGT) and in a meta-grammar engineering system (the LinGO Grammar Matrix customization system) to

automatically produce machine-readable HPSG grammars. Building on prior work to handle the inference of lexical classes, stems,

aixes and position classes, and preliminary work on inferring case systems and word order, we introduce an integrated grammar

inference system called basil that covers a wide range of fundamental linguistic phenomena. System development was guided by

27 genealogically and geographically diverse languages, and we test the system’s cross-linguistic generalizability on an additional

5 held-out languages, using datasets provided by field linguists. Our system out-performs three baseline systems in increasing

coverage while limiting ambiguity and producing richer semantic representations, while also producing richer representations than

previous work in grammar inference.

1 Introduction

Machine-readable grammars for human languages that

are grounded in theoretical syntactic formalisms can be

useful tools in the context of endangered language doc-

umentation and revitalization. First, they support tree-

banking (Oepen et al., 2002), which in turn supports

data exploration (Letcher and Baldwin, 2013; Bouma

et al., 2015); and second, they facilitate the development

of tools such as grammar checkers (daCosta et al., 2016)

and automated tutors (Hellan et al., 2013). In spite of

these advantages, the use of such grammars is hindered

by the time-consuming process of developing them to-

gether with the need of a specific skillset required for

grammar engineering, which is distinct from the skills

involved in documentation itself. We are therefore mo-

tivated to investigate whether we can create machine-

readable grammars automatically.
1

Endangered lan-

guages represent scenarios where the type of resources

required for typical natural language processing tech-

niques are scarce to non-existent. Furthermore, the out-

put we are targeting goes well beyond simple labels or

even structured representations, but rather must be a

coherent and well-formed formal object— a grammar.

Fortunately, we have two rich sources of linguistic

1
This is similar in spirit to the work of Sarveswaran et al. (2019)

who present an eort to create FSMs to provide computational bene-

fits in the context of morphological analysis without requiring addi-

tional technical skillsets.

knowledge from which to work: The first is corpora of

interlinear glossed text (IGT), annotated by field lin-

guists during the process of documentation and anal-

ysis. Due to the eorts of field linguists and archivists,

a number of archives (many of which we list in Ap-

pendix A) make IGT data publicly available. An ex-

ample from Chintang [ISO 639-3: ctn] is shown in (1).

Such annotations are linguistically rich, showing what

grammatical information is marked morphologically

and providing further information implicitly via a trans-

lation into a language of broader communication (in all

examples we work with, this language of broader com-

munication is English). Using the methodology of an-

notation projection, as applied to IGT (Xia and Lewis,

2007; Georgi, 2016), we can leverage parsers available

for the translation language and project structural in-

formation such as part-of-speech (POS) tags and syn-

tactic dependencies onto words in the target language.

(1) Aru

aru

another

unisokon1ŋ.
u-ŋis-u-kV-n1ŋ
3nss/a-know-3p-ind.npst-neg

‘They did not know another [language].’ [ctn]

(Bickel et al., 2013a)

The second source of linguistic knowledge that

we have in hand is the LinGO Grammar Matrix cus-

tomization system (Bender et al., 2002, 2010; Zama-

raeva et al., forthcoming), which maps from relatively
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simple grammar specifications to full-fledgedmachine-

readable grammars, couched in the framework ofHead-

driven Phrase Structure Grammar (HPSG; Pollard and

Sag 1994; Müller et al. 2021), and compatible with

DELPH-IN
2
processing tools. TheGrammarMatrix cus-

tomization system consists of a core grammar, hypoth-

esized to be shared across languages, and a series of

typologically-informed libraries of analyses of cross-

linguistically variable phenomena.

Leveraging these sources, the question we investi-

gate here is whether and how we can create machine-

readable HPSG grammars for typologically diverse lo-

cal
3
and/or endangered languages on the basis of cor-

pora of IGT and the Grammar Matrix. In particular, we

build on the open-source code base provided by the AG-

GREGATION project (Bender et al., 2014, inter alia) to

produce the following contributions: (1) We integrate

all existing inference modules into a single system to

which (2) we add modules for additional grammatical

phenomena and (3) where previous end-to-end testing

treated only a single language, we use 27 diverse lan-

guages in development, doing end-to-end system test-

ing on 9 of the 27, and then evaluate on 5 additional

held-out languages not considered during system de-

velopment.

We begin by situating our work on grammar in-

ference against the broader background of automatic

grammar generation in Section 2 and then provide

background on the AGGREGATION project in Sec-

tion 3. Section 4 describes our methodology for gram-

mar inference, including lexical, morphological and

syntactic aspects of an inferred grammar. In Section 5,

we describe the languages we used in system develop-

ment and how we use the DELPH-IN suite of soware

tools to evaluate the grammars we create by parsing

and treebanking held-out data from each language. We

use that same methodology for held-out languages to

evaluate the generalizability of the system, finding that

though the coverage of the grammars is still limited,

the proposed methodology generally produces higher

quality grammars than three baseline approaches. The

languages we test on and the results of this evaluation

are presented in Sections 6 and 7. Finally, Section 8

provides error analysis and discussion. We conclude in

Section 9 with discussion of applications of grammars

produced in this fashion.

2www.delph-in.net
3
These are oen called ‘low-resource languages’, but Bird (2022)

argues that this label projects a number of Eurocentric beliefs onto

these languages. Bird proposes describing languages as standardized,
local and contact rather than high and low resource.

2 Automatic Grammar

Generation

Interest in creating machine-readable grammars is

likely as old as the field of computational linguistics

itself, with published work in grammar engineering—
the process of creating machine-readable grammars by

hand—going back at least as far as Zwicky et al. (1965)

and continuing into the present day. Our work in gram-

mar inference builds on grammar engineering work (in

the form of the Grammar Matrix; Bender et al., 2002,

2010; Zamaraeva et al., forthcoming), but also fits into

a tradition of work on automatic grammar generation,
which is the development of systems that automatically

create grammars on the basis of data. Within auto-

matic grammar generation, we distinguish four broad

categories of approaches, dierentiated by the types

of inputs they take: grammar induction from strings—
automatic grammar generation based on text alone

(§2.1); grammar extraction—automatic grammar gener-

ation based on treebanks (§2.2); grammar induction from
meaning representations—automatic grammar genera-

tion based on strings paired with some form of se-

mantic representation (§2.3); and grammar inference—
automatic grammar generation based on text anno-

tated with partial grammatical information but not full

parse trees or logical forms (§2.4).

Just as these four approaches to grammar genera-

tion dier in their input, they also dier in the types

of grammars they can produce. Grammar induction,

if working from strings alone, will produce noisy rep-

resentations that align only partially with structures

created by linguists. Grammar extraction will produce

grammars that provide the same kind of representa-

tions as given in the source treebank and similarly,

grammar induction based on strings paired with se-

mantic representations will produce grammars that can

output those semantic representations. In each of these

cases, the generated grammarwill also typically include

a parse selection model, based on observed paerns in

the corpus. Grammar inference systems, by contrast,

draw on both partial annotation in their input data and

some external source of grammatical knowledge. For

this reason, the inferred grammars can generate richer

representations than those found in the input.

2.1 Grammar Induction from Strings

Oen characterized as an incomplete data problem (see

inter alia Klein and Manning, 2001), where the com-

plete datawould be a corpus of trees, grammar induction
from surface strings seeks to produce grammars solely

on the basis of text. Early grammar induction work

focused on producing context-free grammars (CFGs),

which involved two components: (1) identifying con-
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stituents and (2) identifying their categories (see Klein

and Manning, 2001, 2002). Klein and Manning (2004)

improved upon this work by inducing an unlabeled syn-

tactic dependency grammar and combining it with the

induced CFG for beer performance parsing over En-

glish [eng], German [deu] and Mandarin [cmn]. This

basic approach has informed work which further tuned

the algorithm by preferring short vs. long dependencies

and testing on additional languages, as in Smith and

Eisner 2006. One shortcoming of these approaches is

that they only take into account contiguous dependen-

cies. Bod (2009) introduces an approach that allows dis-

contiguous subtrees and thereby handles non-adjacent

dependencies. Most recently, neural nets, such as BERT

(Devlin et al., 2019), have proven eective in producing

unlabeled dependency parses, as demonstrated by He-

wi and Manning (2019), although only parses and not

a human-interpretable grammar have been generated.

While unlabeled syntactic dependencies can be inferred

from text and are useful for some tasks, they do not pro-

vide any information regarding the type of syntactic re-

lationship between two constituents. Therefore, other

methodologies of automatic grammar generation have

focused on using inputs that are encodedwithmore lin-

guistic information.

Still another strand of recent work seeks to improve

grammar induction by using strings (still without lin-

guistic labels) that are captions of still images (Shi et al.,

2019; Zhao and Titov, 2020) or descriptions of videos

(Zhang et al., 2021). These sources of grounding have

been shown to improve recall of dierent constituent

types, but the resulting parsers still produce quite im-

poverished and noisy representations.

2.2 Grammar Extraction

In contrast with the impoverished input used by gram-

mar induction from surface strings, grammar extrac-

tion uses the syntactic information available in tree-

banks— collections of syntactic trees— to define gram-

mars. Typically these grammars are produced by walk-

ing the trees in a treebank, collecting rules that could

produce those structures and pruning to remove redun-

dant rules (Krotov et al., 1998).

Because an extracted grammar is informed by the

formalism and theory implicit in the tree structures

in the input, it will produce trees with roughly the

same amount of syntactic information as the formal-

ism used to create the treebank. This can range from

context-free grammars (CFG), as in Krotov et al. 1994, to

grammar formalisms such as HPSG, as in Simov 2002.

However, while the level of detail in the treebanked

parses limits that of the resulting grammar, work has

been done to extract a grammar in a dierent formal-

ism than that represented in the input. Xia (1999),

for example, proposed an algorithm to do additional

bracketing on the Penn Treebank II-style trees (Mar-

cus et al., 1994) in order to extract a Lexical Tree Ad-

joining Grammar (LTAG), which was more expressive

than the CFG in the input. Similarly, Hockenmaier and

Steedman (2007) present an approach to converting the

Penn Treebank to Combinatory Categorial Grammar

(CCG) representations, adding significant information,

from which CCG grammars can then be extracted (e.g.

Hockenmaier and Steedman, 2002; Clark and Curran,

2004). Neural networks have also been used to gen-

erate parse trees based on syntax trees in the training

data. KERMIT (Zanzoo et al., 2020) generates syntac-

tic parses of the same form as those in the training data

and lends a great deal of interpretability to the under-

lying BERT (Devlin et al., 2019) model, although it does

not produce a grammar or human-interpretable rules.

In principle, grammar extraction is possible for any

language for which there is a treebank and recent work

has leveraged the Universal Dependencies Treebank

(Nivre et al., 2016), a collection of dependency tree-

banks for over 100 languages, to generate grammars

for a wide range of languages (see inter alia Agić et al.,

2016; Noji et al., 2016; Han et al., 2019). Our goals in this

work, however, are to generate grammars for local lan-

guages,
4
many of which are not represented in the UD

collection, and to produce syntactic and semantic rep-

resentations which are richer than dependency parses.

2.3 Grammar Induction from Meaning

Representations

In contrast with grammar extraction which relies on a

treebank of syntactic parses, grammar induction from

meaning representations relies on sembanks, typically
pairing sentences with either semantic dependencies

or logical forms. The types of semantic representa-

tions used in this work have ranged from formal query

language (Kate et al., 2005; Kate and Mooney, 2006)

to semantic dependencies from the Redwoods tree-

banks, which are based on Minimal Recursion Seman-

tics (MRS; Copestake et al., 2005) as in Buys and Blun-

som 2017 and Chen et al. 2018. The input is not always

limited to meaning representations alone, and for ex-

ample, previouswork has also used additional input lex-

ical templates to beer handle morphological complex-

ity (Kwiatkowski et al., 2011).

Due to the richness of semantic information in the

input, grammars induced from text paired with seman-

tic representations rather than text alone are capable

of capturing much more detailed and meaningful se-

mantic relations than the unlabeled syntactic depen-

dency relations produced by grammars induced only

from surface forms. Such semantic representations are

still, however, constrained by what’s available in the

4
See footnote 3.
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training data.

2.4 Grammar Inference

Grammar inference systems take as input a collection

of text with partial grammatical annotations and use

some external source of grammatical knowledge that is

not specific to the language at hand to produce gram-

mars that give richer representations than those pro-

duced by grammar induction without requiring a tree-

bank. While these systems generally are not proba-

bilistic and do not necessarily include a parse-selection

model, as is common with induced or extracted gram-

mars, they allow us to automatically generate formal

linguistic grammars without a treebank.

To produce grammars in the Minimalist Grammar

formalism (MG; Stabler, 1996) of the Minimalist Pro-

gram (Chomsky, 1995), Indurkhya (2020) used a set of

sentences annotated for part-of-speech (POS), agree-

ment, predicate-argument structure and clause type

(interrogative or declarative). This system inferred

a lexicon for English on the basis of those annota-

tions, pruned it with a set of Minimalist axioms, and

combined it with a non-language-specific notion of

merge (with internal and external subtypes) to create

a machine-readable Minimalist Grammar.

Whereas Indurkhya used a custom annotation

scheme for the input data, Hellan (2010) and Ben-

der et al. (2014) leveraged the rich annotation already

present in interlinear glossed text (IGT), illustrated in

(1). IGT is a particularly rich source of data because

it includes morpheme segmentation, glosses for each

morpheme which encode morpho-syntactic informa-

tion and a translation into a language with many NLP

resources (frequently English). A particularly aractive

fact about IGT data is that it is the format broadly used

in linguistics to record data during collection and anal-

ysis, so IGT corpora exist for many languages that do

not otherwise have very much wrien text.

Hellan (2010) and Hellan and Beermann (2011) in-

ferred grammars using a combination of specially an-

notated IGT and the grammar engineering toolkit Type-
Gram. TypeGram is based on the DELPH-IN Joint Ref-

erence Formalism (Copestake, 2002a) which supports

the development of typed feature structure grammars,

typically within the HPSG framework. Hellan (2010)

positioned TypeGram as a hybrid of HPSG and Lexical

Functional Grammar (LFG; Kaplan and Bresnan, 1982).

In addition to the annotations of typical IGT, their input

data also included labels indicating syntactic proper-

ties such as valence paerns and constructions such as

passive. The TypeGram resource included grammatical

rules which are named by the same inventory of label

types and thus could directly instantiate a grammar o

of an appropriately annotated corpus. The authors il-

lustrate their system with examples from Ga [gaa] and

Figure 1: AGGREGATION Pipeline

Kiswahili [swh].

Bender et al. (2014) also produced HPSG grammars

in the DELPH-IN formalism on the basis of IGT data.

However, they worked directly from the type of anno-

tations typically produced by documentary linguistics

projects, that is, IGT with thorough segmentation and

glossing at the morpheme level, but no clause-level an-

notations. They inferred a lexicon, morphological rules

and syntactic properties, and encoded this information

in grammar specifications. Using the Grammar Matrix,

which allows the user to define a grammar specification

that selects from a typologically broad catalog of anal-

yses for dierent syntactic phenomena and pairs these

analyses with a core grammar used across languages,

they generated grammars for Chintang [ctn] from their

inferred specifications.

Our goal is to create precise syntactic grammars

for languages without existing extensive NLP resources,

using the rich annotated data that already exists for

many of these languages. We build on the approach

set forth by Bender et al. (2014), which we describe in

detail in the following section. In addition, we extend

the typological breadth of work on automatic grammar

generation by focusing on languages which are far from

the NLP mainstream.

3 The AGGREGATION Project

The AGGREGATION project (Bender et al., 2013, 2014;

Howell et al., 2017; Zamaraeva et al., 2017, 2019a), de-

scribes its primary goal as providing the benefits of

implemented, formal grammars to documentary lin-

guists, without their having to invest time in develop-
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ing those grammars by hand. Such grammars are use-

ful for testing linguistic hypotheses against data (Bier-

wisch, 1963; Müller, 1999; Bender, 2008b; Fokkens, 2014;

Müller, 2015) as well as building treebanks which are

useful for discovering examples of phenomena in a lan-

guage (Bender et al., 2012; Letcher and Baldwin, 2013;

Bouma et al., 2015). The task of developing a grammar

by hand is very time consuming and not likely to be

taken up by field linguists already busy with the work

of language documentation and description. However,

the detailed analysis involved in annotating IGT data

(another time consuming task that documentary lin-

guists are doing anyway) provides a very rich start-

ing point for producing these grammars automatically.

Therefore, an end-to-end pipeline that begins with an

IGT corpus and results in a machine-readable grammar

has the potential to serve the language documentation

community without requiring additional work on their

end, either in the form of data curation or grammar en-

gineering.
5
The AGGREGATION project has produced

many key components towards this goal, as well as a

rudimentary end-to-end pipeline (tested on Chintang

in Bender et al. 2014 and Zamaraeva et al. 2019a). In

this work, we build on those components to create a

more robust and full-featured pipeline. In this section,

we present the overall AGGREGATION pipeline as it is

developed in our work, with reference to previous work.

In (2; repeated from 1) we present an example of

interlinear glossed text (IGT) from the Chintang Lan-

guage Research Project (CLRP; Bickel et al., 2013b).

Based on the information encoded in this IGT and oth-

ers in the corpus, our goal is a grammar that parses this

sentence to produce an HPSG syntactic representation,

like the one in Figure 2, and anMRS semantic represen-

tation, as in Figure 3.

(2) Aru

aru

another

unisokon1ŋ.
u-ŋis-u-kV-n1ŋ
3nss/a-know-3p-ind.npst-neg

‘They did not know another [language].’ [ctn]

(Bickel et al., 2013a)

Inferring an implemented HPSG grammar directly

from an IGT corpus would probably be prohibitively dif-

ficult, given the intricate nature of the target grammar.

However, we have established a pipeline that leverages

a number of existing resources to extract information

from an IGT corpus and produce a customized gram-

mar for that language. This pipeline, illustrated in Fig-

ure 1, expects as its starting point an IGT corpus, typ-

ically from Toolbox (SIL International, 2015) or FLEx

5
Ultimately, we hope to serve the communities whose languages

are being documented, whether by outsider or insider linguists, by

enabling further language technology. However, the immediate au-

dience for implemented grammars remains linguists as opposed to

language teachers and learners.

S

VP

V

V

V

V

V

u-ŋis-u-kV-n1ŋ
trans-verb-lex-item

3ns-subj-agr-lex-rule

3-obj-agr-lex-rule

ind-npst-lex-rule

neg-lex-rule
NP

N

aru

common-noun-lex-item

bare-np-rule

comp-head-rule
head-opt-subj-rule

Figure 2: The parse tree for the sentence in (2), which

was generated by an inferred grammar of Chintang and

corresponds to the semantic representation in Figure 3

_know_v _another_n exist_q neg

TOP

ARG1/NEQ

RSTR/H

ARG1/NEQ

Key features on semantic variables:

_know_v (ARG0 {SF prop, TENSE npst, ASPECT ind},
ARG1 {PER 3rd, NUM ns}, ARG2 {PER 3rd})

Figure 3: A semantic representation for the sentence in

(2), generated by an inferred grammar of Chintang

Figure 4: IGT Enriched with INTENT
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(also from SIL, see (Rogers, 2010)), that was collected

by a field linguist, which we convert to an extensible

and flexible XML-based format for IGT data called Xigt

(Goodman et al., 2015). We then enrich the IGT using

INTENT (Georgi, 2016), which projects syntactic depen-

dencies and part-of-speech (POS) tags onto words in

the language from a parse of the English translation, as

shown in Figure 4.

The enriched corpus provides four key components

that are necessary for grammar inference: morpheme

segmentation, glossing, POS tags and syntactic depen-

dencies, which can be seen in the final box in Figure 4.

Themorpheme segmentation and glossing are provided

by the linguist in the source IGT and are necessary to

extract a lexicon, infer the morphotactic system and as-

sociate morpho-syntactic and morpho-semantic infor-

mation with the corresponding morphemes. POS tags

are oen provided in the source IGT, but if they are

not, they can be acquired from INTENT. INTENT cre-

ates alignments between the English translation and

the sentence by leveraging the one-to-one alignment

between words of the sentence and words in the gloss

line and noisy alignment between the gloss words (fre-

quently English lemmas) and the English translation

line. It then parses the English sentence and projects

the POS and syntactic dependency tags from the En-

glish parse onto the aligned words in the source lan-

guage. While this approach only provides an approx-

imation, as POS and dependencies do not necessar-

ily map across languages, it serves as a useful starting

point for inference. Finally, the projected dependen-

cies allow us to discriminate between arguments, mod-

ifiers and conjuncts and to identify dierent types of

constituents in the sentence in order to infer syntactic

properties.

Our grammar inference system uses these four

components to produce a grammar specification file.

As an example of our target output, Figure 5 illus-

trates some of the values we infer that are relevant to

sentential negation in Chintang. Chintang expresses

sentential negation with a verbal suix -n1ŋ. We in-

dicate that negation is expressed with a single mor-

pheme by seing the negation exponence (neg-exp)

to 1 in the grammar specification. In the morphology

section of the grammar specification, we define one or

more lexical rules for amorphemewith orthography n1ŋ
and morpho-semantic feature negation: plus. This

grammar specification can be input to the Grammar

Matrix customization system (Bender et al., 2002, 2010),

which uses stored syntactic analyses to produce cus-

tomized grammars for languages based on the spec-

ification. The customized grammar generated by the

Grammar Matrix for this specification will contain the

appropriate lexical rule(s) to model negation (Crowgey,

2012), which are illustrated in Figure 6.

Figure 5: A portion of the grammar specification con-

taining (some of) the relevant specifications for senten-

tial negation in Chintang

Figure 6: The relevant lexical rule for negation in the

Chintang grammar, produced from the specification in

Figure 5
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The lexical rule in Figure 6 licenses the topmost

V node in Figure 2 and introduces the neg predica-

tion in Figure 3. This rule is expressed in the DELPH-

IN Joint Reference Formalism (called tdl; Copestake,

2002a), which can be used to implement HPSG-style

typed feature structures. A grammar encoded in this

way can be loaded into DELPH-IN processing tools

like the LKB (Copestake, 2002b) and ACE (Crysmann

and Packard, 2012) for parsing and [incr tsdb()] (Oepen,

2001) and FFTB (Packard, 2015) for treebanking.

Previous work in the AGGREGATION Project has

produced grammar specifications that contain a lexicon

of nouns and verbs, morphological rules and descrip-

tions of the language’s word order and case system as

well as case frames for individual words. The lexicon

and morphotactic rules are inferred using MOM (Wax,

2014; Zamaraeva, 2016), which we describe in Sections

4.2 and 4.3. These rules abstract away from morpho-

phonology, so the inferred grammars are tested by pars-

ing the morpheme-segmented line of the IGT. Inference

algorithms for basic word order and case system were

developed by Bender et al. (2013) and this inference

together with lexical inference was used to generate

grammars by Bender et al. (2014) and Zamaraeva et al.

(2019a).

In this work, we present basil, an inference sys-

tem that extends the number of phenomena that can

be inferred by building on the existing morphotactic

and syntactic inference systems. This system, also de-

scribed in Howell 2020, infers additional lexical items

including determiners, case-marking adpositions, coor-

dinators and auxiliaries as well as properties including

argument optionality, sentential negation and coordi-

nation. We also integrate syntactic and morphological

inference to handle person, number and gender infor-

mation on nouns, agreement between verbs and their

arguments, and tense, aspect and mood contributed

morphologically or by auxiliaries. Finally, whereas pre-

vious work has either evaluated the correctness of the

grammar specifications on a variety of languages (Ben-

der et al., 2013; Howell et al., 2017) or grammar perfor-

mance on a single language (Bender et al., 2014; Zama-

raeva et al., 2019a), we evaluate our system on grammar

performance using 14 genealogically and geographi-

cally diverse languages.

4 Methodology: Inferring Gram-

mar Specifications

This section focuses on our approach to inferring the

grammar specifications illustrated in the previous sec-

tion. We take as our starting point the system of Zama-

raeva et al. (2019a) which integrates the morphological

inference module (called MOM;Wax, 2014; Zamaraeva,

2016; Zamaraeva et al., 2017) and a module for infer-

ence of a few syntactic properties (Bender et al., 2014;

Howell et al., 2017). To this integrated system we add

extended inference for morphologically marked syntac-

tic and semantic features, additional lexical classes and

further syntactic properties to create basil, Building

Analyses from Syntactic Inference in Local languages.

basil takes an enriched (using INTENT; Georgi, 2016)

corpus of the Xigt (Goodman et al., 2015) data type as

input and produces a grammar specification file which

can be input into the Grammar Matrix to generate a

custom grammar for the language. This grammar spec-

ification (§4.1), oen referred to as a ‘choices file’ in

the Grammar Matrix literature, contains specifications

for a lexicon (§4.2), a collection of morphological rules

(§4.3), definitions of syntactico-semantic features (§4.4)

and definitions of syntactic properties (§4.5) for the lan-

guage at hand. During development, we used a set

of 9 core languages to design and tune basil’s algo-

rithms and consulted an additional 18 languages that

were illustrative of particular phenomena we wished

to test (see §5.1). In this section, we describe each

of basil’s inference modules, including the typological

range covered, what specifications the Grammar Ma-

trix customization system requires, and how we infer

appropriate specifications for a language based on IGT.
6

4.1 The Grammar Specification

In this section, we give a brief quantitative overview

of the space in which the inference system is operat-

ing. The grammar specification contains definitions for

lexical items, morphological rules, syntactico-semantic

features and syntactic rules. These take the form of fea-

tures with either fixed or open-ended values, depending

on the linguistic characteristics being defined. While a

number of phenomena can be defined in the Grammar

Matrix, basil focuses on a particular subset of lexical

items and syntactic phenomena, which are modeled by

50 fixed features with 136 possible values in addition to

a number of open-ended features, which allow the user

to enter any value they like, rather than requiring them

to choose from amenu. For some features, multiple val-

ues lead to similar coverage in the resulting grammars,

so we simplify the system by focusing on a subset of the

possible values. Other values are diicult to infer with

suicient accuracy from the available data or are so ty-

pologically rare that they are more likely to be inferred

in error than correctly. For these reasons, basil targets

only 99 of the 136 values, as summarized in Table 1.

While individual lexical entries and morphological

rules have features that must be selected from a menu

with a fixed set of values, the number of lexical items

6
Amore detailed description of these modules and the algorithms

they use can be found in Howell 2020.
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number number

possible targeted

Phenomenon values by inference

noun lexical entry 4 2

verb lexical entry 4 2

auxiliary lexical entry 6 4

adposition lexical entry 3 3

morphological rule 5 5

person 9 8

tense 2 1

word order 10 9

determiner order 4 4

auxiliary order 9 9

case system 9 3

argument optionality 18 15

sentential negation 41 23

coordination 12 11

total 136 99

Table 1: The number of possible values for the 50 fea-

tures with a fixed value set in the grammar specifica-

tion and those targeted by the inference system, broken

down by syntactic category

and morphological rules defined by basil depends on

the number of forms aested in the training corpus.

Thus the size of the lexicon and morphology sections

of the grammar specification varies depending on both

the morphological complexity of the language and the

diversity and number of samples in the training cor-

pus. Similarly, many of the syntactico-semantic fea-

tures supported by the Grammar Matrix allow the def-

inition of unbounded numbers of possible values. For

case, person, number, gender, tense, aspect and mood,

we
7
compiled a list of 116 common values from the

Leipzig Glossing Rules (Bickel et al., 2008), the ODIN

corpus (Xia et al., 2016), Unimorph (Sylak-Glassman

et al., 2015), the GOLD Ontology (GOLD, 2010) and our

own observation, which the inference system can add

to grammar specifications.

4.2 The Lexicon

The most accurate and fully detailed typological speci-

fication cannot produce a working grammar without a

lexicon. At the same time, decent coverage over unseen

texts for languages with any morphological complex-

ity requires a lexicon built in terms of lexical entries for

roots plus some model of morphological processes. The

Grammar Matrix customization system elicits, as part

of its input grammar specifications, descriptions of lex-

ical classes and lexical rules. In this section, we describe

lexical class specifications and how we infer them.

In brief, a lexical class is defined in terms of its part-

of-speech, any further features specific to the class, and

7
This list comes from joint work with Olga Zamaraeva.

section=lexicon

noun1_name=noun1

noun1_feat1_name=person

noun1_feat1_value=3rd

noun1_det=opt

noun1_stem1_orth=kekrú

noun1_stem1_pred=_blackberry_n_rel

noun1_stem2_orth=khoy

noun1_stem2_pred=_bee_n_rel

Figure 7: The definition of a common noun lexical class

for Meithei

a set of lexical entries, which give the orthographic rep-

resentations and semantic predicate symbols
8
for en-

tries in that class. As an example, Figure 7 illustrates

a lexical class for a type of common nouns in Meithei

[mni].

The Grammar Matrix customization system inter-

face provides for nouns, intransitive verbs, transitive

verbs, clausal complement verbs, auxiliaries, copulas,

determiners, case-marking adpositions, and adjectives

in its lexicon section. In addition, sections for particular

syntactic phenomena allow for the definition of lexical

entries for such items as conjunctions, subordinating

conjunctions, complementizers, and negation adverbs.

This classification of basic types of words brings with

it a set of assumptions about what word classes ex-

ist in the world’s languages, for example, that nouns

and verbs are distinct cross-linguistically. We make no

claims regarding the actual parts of speech of the lex-

ical items MOM and basil infer, but aempt to model

these words eectively in the resulting grammar. (For

recent work showing that even languages with appar-

ent category flexibility can be fruitfully analyzed in this

way, see Crowgey’s 2019 study of Lushootseed [lut].)

basil infers only a subset of the lexical categories

supported by the Grammar Matrix, which are shown

in Figure 8. In this section, we describe the process of

extracting these definitions from the IGT corpus, with a

focus on nouns and verbs and their subcategorization.

4.2.1 Noun and Verb Extraction

At the highest level of abstraction, lexical inference in-

volves the definition of classes of words and the al-

location of words to classes. In our system, the first

pass classification of words involves parts of speech.

The next level concerns inflection classes: which words

8
We use the DELPH-IN convention for predicate symbols which

includes a lemma followed by the part-of-speech (Flickinger et al.,

2014a). For ease of evaluation in our current context, we use English

glosses as the lemmas. For most applications, it is beer to use lem-

mas from the language being modeled instead, as one cannot expect

perfect word-level translational equivalence across languages.
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lexical category

noun

common
noun

pronoun

determiner verb

main verb

transitive intransitive

auxiliary

negation
auxiliary

other
auxiliary

case-marking
adposition

other

conjunction negation
adverb

Figure 8: A taxonomy of the lexical categories that basil infers, organized according to the inference process

(within a part of speech) can be input to which lexi-

cal rules. To define these classes for nouns and verbs,

we leverage the MOMmorphological inference system.

MOM identifies nouns and verbs based on their POS

tags and uses a graph-based approach to identify and

define inflection classes. (The morphotactic inference

is further described in Section 4.3.)

4.2.2 Noun and Verb Subcategorization

In addition to defining lexical classes based on their

morphotactic paerns, we must also group lexical en-

tries based on their syntactic properties. In princi-

ple, this grouping can either be included in the in-

put to MOM or performed on the output. Zamaraeva

et al. (2019a) take the former approach to subcategorize

verbs based on their valence properties by first infer-

ring verbal case frame and including this information

in MOM’s input. MOM does not merge verbs with dif-

ferent valences, so the lexicon it produces includes sep-

arate classes for e.g. intransitive and transitive verbs,

and those classes are further subcategorized based on

their morphotactics.

To account for pronouns separately from common

nouns and auxiliaries separately from verbs, we take

the lexical classes in MOM’s output and divide them

based on their glosses: basil identifies nouns whose

predication (in MOM’s output) includes either an En-

glish pronoun or person, number, gender (PNG) or case

features with no lemma and moves them into new lex-

ical classes. basil constrains all common noun lexi-

cal classes to be third person, leaving number to the

morphological analysis and inherent gender to future

work (as shown in Figure 7 above). Pronoun lexical

classes have more varied PNG and case values than

common nouns, which basil accounts for by identifying

any PNG and case glosses in MOM’s output predica-

tion and specifying them as features on the pronoun’s

lexical entry.

Extracting auxiliaries from the verbal lexical classes

and accounting for them in the grammar specification

requires information regarding the auxiliary’s syntactic

distribution. For this reason, basil identifies auxiliaries

from the source IGT rather than from MOM’s lexicon,

as we will describe in Section 4.5.1.

4.2.3 Additional Lexical Items

The Grammar Matrix does not support morphological

inflection for determiners or adpositions, so it is not ad-

vantageous to infer these using MOM. Instead, basil

extracts the full form orthographic representation and

PNG and case features from the IGT. Where possible,

we identify determiners from the POS tags, and if those

are not available, basil looks for specific grams or lem-

mas in the gloss. Our grammars also support negation

and coordination particles, which are described in their

respective subsections of Section 4.5.

4.3 Morphotactics

The morphological component of a machine-readable

grammar ultimately needs to account for which mor-

phemes can co-occur and in which order, what the syn-

tactic and semantic contributions of each morpheme

are, and the morphophonological processes that re-

late the actual word forms to the collection of mor-

phemes that make them up. The Grammar Matrix

abstracts away from the morphophonology, assuming

that the generated grammars will be interfaced with

an external morphophonological analyzer (Bender and

Good, 2005).
9
Accordingly, our inference system is only

concerned with morpheme order, co-occurrence, and

syntactico-semantic contributions.

The grammar specification files handle morpheme

co-occurrence in terms of position classes (PCs), each

of which specify what they can aach to (their ‘input’),

9
In brief, the idea is thatmorphophonological phenomena are best

handled with dierent formal approaches than morpho-syntactic

ones, so a parser using our grammars would be pipelined with bidi-

rectional morphophonological analyzers. These laer map between

surface realizations and morphophonolgically regularized sequences

of morphemes, such as what is oen found in the morpheme seg-

mented line of IGT.
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section=morphology

noun-pc1_name=noun-pc1

noun-pc1_order=suffix

noun-pc1_inputs=noun1

noun-pc1_lrt1_name=noun-pc1_lrt1

noun-pc1_lrt1_feat1_name=case

noun-pc1_lrt1_feat1_value=nom

noun-pc1_lrt1_lri1_inflecting=yes

noun-pc1_lrt1_lri1_orth=-p@

Figure 9: The definition of a position class for Lezgi

whether they are prefixes or suixes, and which lexical

rules they house. The lexical rules are defined in terms

of lexical rule type (LRTs) which bear type constraints

(feature/value pairs) and which in turn are instantiated

by lexical rule instances (LRIs), which have specific af-

fix spellings or are flagged as zero aixes (non-spelling-

changing rules) (Goodman, 2013). An example of the

specification for a position class in Lezgi [lez] is shown

in Figure 9. Each PCmust have at least one input (a lex-

ical class or another PC) and a position (prefix or suf-

fix)
10
and can be marked obligatory. Each PC must also

have one or more LRTs, which can specify features on

the word or on the arguments of the word. Each LRT

must have one or more LRIs, which includes an ortho-

graphic form or a flag indicating that the rule involves

no overt morpheme.

We use the MOM morphotactic inference system

(Wax, 2014; Zamaraeva, 2016; Zamaraeva et al., 2017,

2019a) to infer the morphological rules. MOM infers

a graph of the morphemes by collecting the aixes for

each word with a noun or verb POS tag, creating a PC

with an LRT which includes any features found in the

gloss and an LRI with the appropriate orthographic rep-

resentation and merging PCs that have overlapping in-

puts.
11

While the morphotactic graph is essential for pro-

cessing individual words, the morpho-syntactic or

morpho-semantic features on thosemorphemes are key

to producing the correct parse for larger phrases and

sentences. MOM uses a feature dictionary comprising

a large number of known glosses, grouped by their type,

to map common grams to features. For example, the

grams ‘ipfv’, ‘impfv’ and ‘imperf’ are all mapped to im-

perfective aspect. When MOM constructs the lexical

rule types, it adds the features corresponding to any

PNG, TAM or case grams to the lexical rule.

Non-inflecting lexical rules pose a particular chal-

lenge because they are not typically glossed as separate

10
The Grammar Matrix does not handle circumfixes separately.

These must be specified as individual prefixes and suixes. Infixes

are not explicitly handled; instead the Matrix assumes that a mor-

phophonological analyzer regularizes these to prefixes or suixes. See

footnote 9.

11
For more detail, see op cit.

morphemes in IGT but rather indicated with a gram at-

tached to the previous element with a “.”, if they are

indicated at all. MOM only creates non-inflecting rules

for glosses it is able to map to PNG, case or TAM fea-

tures, and only when such a gloss is found aached

to the gloss for a stem. For example, if a noun is

glossed as ‘dog.nom’, MOMcreates a non-inflecting lex-

ical rule to add nominative case. All PCs which con-

tain a non-inflecting LRI are made obligatory, so that

forms without overt aixes do not end up only option-

ally bearing the features associated with that part of

the paradigm.
12

The result of morphological inference with MOM is

a set of lexical rules grouped into position classes mod-

eling their combinatorial potential. Within those posi-

tion classes are lexical rule types that contribute fea-

tures and in turn contain lexical rule instances, which

either correspond to a particular orthography or are

non-inflecting. Both the morphological rules in this

section and the lexical entries in Section 4.2 contain

morpho-syntactic features which interact with the syn-

tactic inference in Section 4.5. The next section is con-

cerned with how we define those features in the gram-

mar specification, so that they will interact properly in

the resulting grammars.

4.4 Syntactico-semantic Features

A great deal of semantic information is expressed mor-

phologically in the form of person, number and gender

(PNG) marking on nouns or agreement on verbs and

tense, aspect and mood (TAM) inflection on verbs and

auxiliaries. In order to model these features, the gram-

mar specificationmust contain two types of definitions:

First, the features and values themselves must be de-

fined as belonging to the appropriate PNG or TAM cat-

egory; and second, they must be associated with the

appropriate lexical entries or morphological rules. The

work of associating these features with the appropri-

ate forms was described in Sections 4.2 and 4.3. When

building the lexicon and morphological rules, MOM as-

sociates each feature value (e.g. perfective) with a type

(e.g. aspect) according to their classifications in the

GOLD Ontology (GOLD, 2010) and Unimorph (Sylak-

Glassman et al., 2015). In this section we describe how

basil uses these features and types to define more de-

tailed type definitions for each PNG and TAM category,

so the syntactic constraints contributed by these fea-

tures can be used in the grammar and their semantic

contributions will be reflected in the semantic repre-

sentations.

12
The addition of non-inflecting lexical rules to MOM, as well as

the functionality of collecting the initial set of grams and adding fea-

tures to lexical rules described in the preceding paragraph, is from

unpublished work by Olga Zamaraeva.
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4.4.1 Person

Generally speaking, person is a feature that marks the

entities in an uerance with respect to discourse partic-

ipants (Siewierska, 2004), where first is the speaker, sec-
ond is the addressee and third is someone or something

outside of the discourse context. Combinations of these

persons, such as first+second ‘I and you’ and first+third
‘I and they’ are sometimes given special grammatical

treatment and are oen referred to as inclusive and ex-
clusive (Cysouw, 2013). The Grammar Matrix’s library

for person (Drellishak, 2009) provides a set of six options

for person distinctions: first, second, third; first, second,

third and fourth; first and non-first; second and non-

second; third and non-third; and none. It also allows

three options with regard to subtypes in the first per-

son: none, inclusive vs. exclusive (along with the num-

ber categories in which this distinction applies) and

other.

Aer collecting all of the person features from the

lexical items and morphological rules, basil posits that

the language contains first, second, third and fourth

person if it found 4th person; first, second and third per-

son if it found 3rd and either 1st or 2nd; and then first

and non-first if it found 1st; second and non-second if

it found 2nd; third and non-third if it found third; and

otherwise none. basil then checks for inclusive and ex-

clusive features and if it finds any, it defines an inclu-

sive/exclusive distinction.

4.4.2 Number

Number indicates howmany entities are being referred

to. If a language marks number at all, this distinction

can be as simple as singular vs. plural or may be more

modular distinguishing dual (two), paucal (a few) and

other numbers of entities (Corbe, 2000). The numbers

distinguished by a language vary cross-linguistically

and it is possible for these features to form a hierar-

chy (e.g. non-singular might subsume dual and plural).

Thus, the Grammar Matrix allows number features to

be freely added to the specification file, forming a hier-

archy if desired (Drellishak, 2009). basil defines a num-

ber value for each of the numbers found in the mor-

phology and lexicon. Currently, it defines each of these

as sister types, rather than inferring a hierarchy of su-

pertypes and subtypes, which we leave to future work.

4.4.3 Gender

Gender is another fairly open-ended category in the

world’s languages. While some languages like Russian

[rus] distinguish just masculine, feminine and neuter,

Bantu languages such as Kiswahili [swh] distinguish a

complex system of genders (Corbe, 1991). Linguists

also vary in their annotation of gender features either

using grams like m or masc or using numerals for more

complex systems. To accommodate this flexibility in

the gender distinctions in language and linguists’ an-

notation preferences, the Grammar Matrix allows the

addition of any number of genders by any name, and

allows the specification of a hierarchy (e.g. to support

agreement markers that are ambiguous between two or

more gender values). As with number, basil defines a

gender value for each of the genders found in the mor-

phology and lexicon, but does not infer a hierarchy.

4.4.4 Tense, Aspect and Mood

Every language has some grammatical expression of

time, which falls into the categories of tense, aspect

and/or mood, and these features can be marked ei-

ther morphologically on the verb, with an auxiliary or

morphologically on an auxiliary, and a single uerance

may include a combination of these expressions (Hop-

per, 1982).
13

For example, in the IGT from Matsigenka

[mcb] in (3), the verb oataira is marked with regressive

aspect (reg) and realis mood (realis), while the verb

oponiakara is marked with perfective (perf) aspect and

realis mood (realis). Michael (2008) characterizes the

regressive aspect as a subtype of perfective aspect that

indicates motion back to a salient point of origin.

(3) ovashi

ovashi

so

oataira

o-a-t-a-i=ra

3fS-go-epc-reg-realis=sub

oponiakara.

o-poni-ak-a=ra

3fS-come.from-perf-realis.refl=sub

‘Then she went back to where she came from.’

[mcb] (Michael et al., 2013)

The TAM categories contain a number of possible

values cross-linguistically and, as illustrated by the re-

gressive and perfective aspects described by Michael,

can form hierarchies. As with the number and gender

libraries, the TAM library of the GrammarMatrix (Poul-

son, 2011) also allows the definition of any number of

values for each of tense, aspect and mood and also al-

lows the definition of hierarchies. basil defines each

TAM feature as either tense, aspect or mood in the re-

spective section of the grammar specification, leaving

the inference of hierarchies to future work.

4.4.5 Summary

We described six categories of syntactico-semantic fea-

tures: person, number, gender, tense, aspect and mood.

These features are added to the specifications of lexical

13
In NLP, the TimeML specification language (Pustejovsky et al.,

2003) has been used in an eort to standardize such expressions of

time, and has been made more cross-linguistically viable by eorts

such as Zymla 2017.
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entries ormorphological rules according to themethod-

ologies described in Sections 4.2 and 4.3 and defined as

belonging to their respective categories. The result of

these definitions is a grammar that produces semantic

representations that contain this information and en-

forces agreement between heads and their arguments.

4.5 Syntactic Properties

In this section, we provide a high-level description of

the algorithms used for inferring each of the syntactic

phenomena accounted for in our grammars. Using the

projected dependency tags provided by INTENT and

typologically-informed heuristics, we make generaliza-

tions about distributional properties of the language

and posit the appropriate definitions for that grammar

specification for a range of syntactic phenomena. These

include broad-brush, language-level properties (e.g. ‘the

case alignment is ergative-absolutive’), properties asso-

ciated with specific constructions (e.g. ‘this form can

coordinate VPs in a monosyndetic paern’) and spe-

cific lexical items (e.g. ‘negation is marked via an aux-

iliary with this orthography that combines with a VP

and raises the subject’).

4.5.1 Word Order and Auxiliaries

Languages vary in both their degree of word-order flex-

ibility and, if only specific orders are allowed, which

ones are (e.g. Dryer, 2013c). When linguists talk about

the ‘word order’ of a language, they are frequently re-

ferring to the relative order of a verb and its argu-

ments (subject, complement), but there are also cross-

linguistic dierences in the order of determiners (if

present) with respect to their head nouns, adpositions

with respect to NPs, and others. The ‘word order’ sec-

tion of a Grammar Matrix grammar specification takes

information about each of these (Bender et al., 2010).

We adopt the approach of Bender et al. (2013),

which maps constituent word orders observed in the

data to one of ten canonical word orders (SOV, SVO,

OSV, OVS, VSO, VOS, v-initial, v-final, v2 and free).

This approach identifies verbs based on their POS tags

and their subjects and objects using projected depen-

dency labels. Each observed order of verbs and subjects,

verbs and objects and subjects and objects is counted to

compute a three dimensional vector representing the

respective order of verbs, subjects and objects in the

language, which can be compared to the vector rep-

resentations for each canonical word order. Follow-

ing Bender et al., basil posits the canonical word order

whose vector has the shortest euclidean distance from

the observed language vector as the canonical word or-

der for the language.

Also following Bender et al. (2013), we take a simpler

approach to predict determiner-noun order. Collecting

each noun and determiner pair from the projected de-

pendencies, we count the number of observed deter-

miners before vs. aer the noun and posit whichever

order is most common.

Whereas previous work did not account for auxil-

iaries, basil both identifies auxiliaries as lexical items

and infers their syntactic properties. This includes iden-

tifying their position with respect to the main verb and

inferring what type of constituent they aach to (a verb

(V), verb phrase (VP) or sentence (S)), whether they at-

tach before or aer that constituent, and whether mul-

tiple auxiliaries are possible. We identify auxiliaries in

the corpus as words that are either glossed with an En-

glish auxiliary or modal or glossed with only morpho-

syntactic or morpho-semantic features and no lemma.

While collecting auxiliaries from the corpus we identify

the main verb and its subject and object from the pro-

jected dependencies. We use these to discover whether

the auxiliary occurs before or aer the main verb and

check for a subject intervening between an auxiliary

and verb, which would indicate that the auxiliary takes

an S complement instead of a VP, or an auxiliary inter-

vening between a verb and its object, which would indi-

cate that the auxiliary aaches to a V, rather than a VP.

If no evidence for V or S aachment is found, basil de-

faults to VP aachment, as the argument-composition

analysis that the Grammar Matrix uses to model auxil-

iaries with V complements is computationally very ex-

pensive (see Bender 2010) and we hypothesize that S

aaching auxiliaries are typologically rare.

Because the MOM morphotactic inference system

infers auxiliaries as verbs when constructing the lex-

icon, basil must reclassify these lexical items to give

them the proper definitions to function as auxiliaries in

the grammar. basil does this by finding any verbs in the

MOM-generated lexicon that have the same lemma as

those it identified as auxiliaries. For each, basil defines

an auxiliary lexical class that is input to the same mor-

phological position classes and contains the same fea-

tures as the verb lexical class inferred byMOM. Because

auxiliaries are oen homophonous with main verbs,

basil does not remove the main verb lexical entry.

In addition to the lemma, feature and morpho-

logical combinatorial information described above, the

Grammar Matrix requires specifications for the seman-

tic contribution of the auxiliary. When basil constructs

the auxiliary lexical items from verb lexical items in-

ferred by MOM, it specifies the auxiliary as semanti-

cally contentful and adds the predication value from

the verb if the original verb’s predication contains an

English lemma (e.g. _should_v_rel), rather than con-

taining only grams for syntactico-semantic features.

basil also adds a negation predication if the auxiliary

contributes negation (see Section 4.5.4 for negation in-

ference).
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Finally, the lexical entry includes a value for the

case of its subject, which can be specified as a specific

case, no case restrictions, or the case assigned by the

verbal complement. With our development languages,

we tested an algorithm in which basil checks for dif-

ferences in the case on subjects in sentences with and

without auxiliaries, and adds this constraint to the lex-

icon. We found that this inference is frequently con-

founded by other factors that can aect the subject’s

case, so we did not include this inference in basil and

leave a more accurate algorithm to future work. Cur-

rently basil posits no case restrictions if A) the language

does not have a case system or B) the auxiliary always

occurs with a dierent case than the one inferred for

the verb’s case frame (this leads to some ambiguity, but

avoids the loss in coverage that results from positing a

case that was assigned due to other syntactic factors).

Otherwise it posits that the auxiliary takes its case re-

strictions from the main verb.

Aer identifying the auxiliaries in the corpus, we al-

low for a post-hoc change to the main word order to ac-

count for second position clitic clusters. The Grammar

Matrix supports an analysis set forth by Bender (2008c)

of second position clitics/clitic clusters as auxiliaries in

a V2 language, when those clitics express TAM and/or

agreement features. Clitic clusters that contain PNG

agreement and TAM information are identified during

auxiliary inference and if they occur overwhelmingly as

the second word of each sentence, basil posits V2 word

order for the language to leverage this analysis.

4.5.2 Case System and Case Frame

A language which marks case has variations in the

forms of the noun phrases correlated with their func-

tion in the sentence (Comrie, 1989; Dixon, 1994). A typ-

ical case system will involve both the case required of

core arguments of typical verbs, as well as additional

cases used when NPs function as modifiers (e.g. loca-

tive case) and sometimes selected for idiosyncratically

by specific verbs. Case systems are dierentiated ac-

cording to the alignment they provide for the core ar-

guments of intransitive and transitive verbs. The Gram-

mar Matrix customization system’s case library (Drel-

lishak, 2009) provides nine overarching case systems

(core argument case alignments) and facilitates defin-

ing any number of additional cases. The selection of the

core case system enables default case frames for each

verb type, but grammar specifications can also bypass

these and define verb types which leave case under-

specified or select for alternate case paerns.

To infer the overarching case system, we use an

algorithm developed by Bender et al. (2013) and re-

implemented to use an enriched Xigt corpus by How-

ell et al. (2017), which uses a simple heuristic based on

the total counts of known case grams in the data. This

approach only infers four case systems: nominative-

accusative, ergative-absolutive, split-ergative and none.

Because split-ergative requires information about the

nature of the split, we map it to ergative-absolutive. In

addition to inferring the overarching case system, we

also collect any other case grams in the corpus and de-

fine these in the grammar specification, so that we can

also handle verbs that require alternate case frames.

Here we infer only intransitive and transitive verbs,

leaving ditransitive (which are not currently supported

by the Grammar Matrix) and clausal complement-

taking verbs to future work.

To find the case frame of each intransitive and tran-

sitive verb in the corpus, basil uses the dependency

parse of the English sentence to identify verbs that have

zero or one direct object, skipping any that are passive

or have an indirect object or clausal complement (fol-

lowing Zamaraeva et al. (2019a), such verbs will be ex-

cluded from the final grammar). We find the case of the

subject and object in the gloss line and if no case gram

is found in the gloss, we posit default case based on the

overarching case system. In cases where the marked

case doesn’t match the default, we posit the aested

case for that verb’s arguments. Our approach is sim-

ilar to that of Zamaraeva et al. (2019a), but diers in

that we use projected dependency parses rather than

phrase structure trees and that we account for verbal

case frames that dier from the overarching system.

These constraints interact with the case features on

noun-phrases when verbs unify with their arguments.

Case features may be licensed by the morphological

rules on nouns which were inferred by the morpholog-

ical component described in Section 4.3, can be lexi-

cally specified (e.g. for pronouns, see Section 4.2.2) or

can be indicated by the determiner or a case-marking

adposition. If, for example, the feature specification

[CASE acc] is associated with a lexical rule aaching

an accusative case marker to a noun, or if [CASE acc]

is in the lexical entry for a determiner or adposition,

NPs or PPs built with these lexical entries or rules will

be incompatible with argument positions that require

[CASE nom].

Having described the inference algorithms and sys-

tems for phenomena such asmorphotactics, word order

and case, and the ways in which we refined, adapted

and added to them, we now turn to the entirely new

inference modules that we contribute in this paper, be-

ginning with argument optionality.

4.5.3 Argument Optionality and Marking of Ar-

guments on Verbs

Languages vary in the extent to which and under what

conditions they allow dropped arguments: some lan-

guages allow core arguments of any verb to be dropped

freely, while others are more restrictive if argument
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dropping is possible at all. These restrictions range from

the specific verbs for which argument dropping is al-

lowed, subject vs. non-subject arguments, specific syn-

tactic contexts (e.g. only in certain tenses), or whether

the verb is required to agree with overt vs. dropped ar-

guments (Ackema et al., 2006; Dryer, 2013a). The Mat-

sigenka example in (4) shows a verb with no overt ar-

guments that is inflected for agreement with both the

subject and object.
14

(4) oogaigavakari

o-og-a-ig-av-ak-a=ri

3fs-eat-epv-pl-trns-perf-realis.refl=3mo

‘She ate them.’ [mcb] (adapted fromMichael et al.,

2013)

The Grammar Matrix accounts for subject and ob-

ject dropping as either lexically licensed (allowed for

certain verbs) or possible for any verb (Saleem, 2010;

Saleem and Bender, 2010). It also allows argument

dropping to be constrained by agreement markers on

the verb which can be optional, required or not allowed

when the subject/object is overt, and similarly when

the subject/object is dropped. Finally, specific syntac-

tic contexts in which subject dropping is possible can be

defined. Our inference focuses on determining whether

argument dropping is permied for subjects and ob-

jects in a language and leaves constraints on the con-

text to future work. We infer whether agreement is re-

quired for dropped vs. overt arguments, which requires

dierentiating subject agreement markers and object

agreement markers; however, we leave the integration

of this inference with the morphological rules that li-

cense agreement to future work.

In order to identify whether subject and/or object

dropping is possible in the language, basil begins by

collecting all of the transitive and intransitive verbs
15
in

the corpus together with their overt arguments, based

on the projected dependencies as it did for case-frame

inference (§4.5.2). Whereas the case-frame inference

methodology determines if a verb is transitive based

solely on the presence of an overt object in the English

translation, here we account for the fact that some En-

glish verbs allow object dropping. If the correspond-

ing verb in the English translation has a direct object,

we assume that the verb is transitive. If no object is

found, basil cross-references the verb’s gloss with a list

of English object-dropping verbs from the lexical en-

tries in the English Resource Grammar (ERG v. 1214;

Flickinger, 2000, 2011) of the type v_np*. If the verb is

found in this list, basil posits that the verb is transitive

14
We analyze the pronominal clitics in Matsigenka as aixes,

rather than independent words, following Inman (2015).

15
Because basil does not infer ditransitive or clausal complement-

taking verbs, it excludes them from consideration when inferring ar-

gument dropping.

and otherwise intransitive. Although the argument op-

tionality of verbs does not necessarily map across lan-

guages, leveraging this list of English object-dropping

verbs allows us to err on the side of positing transitiv-

ity, and we find that doing so improves the coverage of

the resulting grammars.

Agreement with the subject or object can bemarked

either on themain verb or on an auxiliary. To determine

whether a verbal complex has subject and/or object

marking, basil identifies any auxiliaries associatedwith

each verb and collects all agreement markers (across

the verb and any auxiliaries), using a hand-compiled list

of common agreement glosses. We compiled this list

from the agreement glosses used by MapGloss (Lock-

wood, 2016) as well as observed glosses in the devel-

opment data. Although agreement is not the only way

arguments are marked on verbs (for example, in Hausa

the verb’s inflected form depends on whether or not an

overt object is present, but this form does not include

any PNG information (Newman, 2000)), it is the most

common form and the easiest to identify. In addition

to collecting all agreement markers, we use a heuris-

tic to identify whether the agreement markers corre-

spond to more than one argument: if the set of agree-

ment glosses has multiple glosses of a particular cat-

egory (e.g. person, number or gender), basil says that

the verb is marked for more than one argument. This

approach is particularly valuable when a single mor-

pheme is used to mark two arguments. For example in

(5) from Basque [eus], dio is glossed as 3abs-3dat.3erg,

containing three third person glosses, so basil counts

three agreement glosses on that verb.

(5) Eduk

Edu-k

Edu-erg

neska

neska

girl.abs

Toniri

Toni-ri

Toni-dat

aipatu

aipatu

mention

dio

d-io

3abs-3dat.3erg

‘Edu has mentioned the girl to Toni.’ [eus]

(adapted from Xia et al., 2016)

We use the presence of agreement features on any

verb in the set to detect argument marking on the main

verb. Intransitive verbs with any agreement gloss are

classified as having subject marking. The orthogra-

phies associated with these glosses are saved in a set of

known subject markers. Aer all of the subject markers

on intransitive verbs have been collected, basil looks at

the transitive verbs. Transitive verbs with more than

one agreement gloss (like that in (5)) are classified as

having subject and object marking. Transitive verbs

with only one agreement gloss which corresponds to

the orthography of a known subject marker are classi-

fied as having subject marking and the remainder are

classified as having object agreement. The set of known
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subject glosses is included in the input to MOM. When

deciding if a PNG gram should be identified with the

subject or object, MOM consults this list and associates

it with the subject if the verb is intransitive or the mor-

pheme is in the set of subject morphemes and with the

object otherwise.

basil’s inference for argument optionality has two

components: (1) inferring whether subjects and objects

can be dropped, and (2) inferring whether argument

marking on the verb is possible or even required when

arguments are dropped or overt. The laer involves

identifying argumentmarkers in the form of agreement

morphemes and discriminating between subject and

object agreementmarkers. Our approach focuses on in-

creasing the coverage of the inferred grammars, while

future work to enforce or prohibit argument marking

on verbs with overt versus dropped arguments would

decrease ambiguity.

4.5.4 Sentential Negation

All human languages have a means of expressing sen-

tential negation, but they vary in how many markers

are used and whether those markers are independent

words, bound morphemes (Östen Dahl, 1979; Dryer,

2005, 2013b; Miestamo, 2008) or a missing morpheme

in the paradigm, such as the absence of a tense marker

indicating negation in some south Dravidian languages

(Master, 1946). Crowgey (2012) models sentential nega-

tion in the Grammar Matrix, allowing it to be marked

with 0, 1 or 2 morphemes (calling these strategies zero,
simple and bipartite), which can be bound morphemes,

syntactic heads (auxiliaries) or uninflected particles

(adverbs). The analyses provided by the Grammar Ma-

trix ensure that there is only one negation predication

in the semantics, regardless of the number and type of

markers in the strategy. basil infers each of the possible

combinations as described below.

We first identify sentences with sentential nega-

tion based on the English translation and then target

the gloss line of the IGT to find negation morphemes,

based on common glosses, such as ‘neg’ and ‘not’. basil

considers glosses on aixes to be inflectional negation.

We expect that zero-marked negation will be anno-

tated with a negation gloss on a stem or on another

morpheme and will therefore be modeled with a non-

inflecting lexical rule as described in 4.3, so basil ac-

counts for it using the morphological negation specifi-

cation. If inflectional negation is detected, this is indi-

cated in the sentential negation portion of the grammar

specification which in turn enables a negation pseudo-

feature which can be added to lexical rules. The distri-

butional properties for negation aixes (including zero-

negation) are inferred and specified by the morpho-

logical inference system in Section 4.3, which puts the

negation pseudo-feature on the appropriate lexical rule.

The Grammar Matrix customization system interprets

this pseudo-feature and ensures that the resulting lexi-

cal rules carry negation semantics, as shown in Figure 6.

A root glossed as negation could be either an auxil-

iary or an adverb. The English dependency parse does

not help us decide which, as it simply encodes facts

about negation in English. Instead, we compare these

negation words with the auxiliaries collected in Section

4.5.1. If auxiliary entries were inferred for orthogra-

phies glossed for negation, we treat them as such. Oth-

erwise we define them as adverbs. The distributional

properties of negation auxiliaries were inferred as part

of auxiliary inference (§4.5.1), so there is no additional

work to be done. In the case of negation adverbs, we

use the same process as we did for auxiliaries to decide

what type of constituent they aach to (VP or S) and

whether they occur before of aer that constituent.

Aer identifying instances of sentential negation

in the corpus, basil compares the number of sen-

tences that include one negation marker with those

that include more than one negation marker. Although

basil only looks at sentences with sentential negation,

it does not distinguish between sentential and con-

stituent negation markers, and can mistake a negated

sentence with additional constituent negation as bipar-

tite negation. However, we seek to avoid confounding

from constituent negation co-occurring with sentential

negation by taking the most common strategy (simple

or bipartite) found in the corpus.

If simple negation is the most common, the Gram-

mar Matrix lets us add all of the strategies we found

(aix, auxiliary, and adverb) to the grammar specifica-

tion. For bipartite negation, we can only specify one

combination ofmarkers, so if bipartite negationwas the

most common strategy found in the corpus, we add the

twomost common co-occuring types of negation mark-

ers (e.g. adverb and aix) to the grammar specification.

While theMatrix only allows us to add one orthography

for a negation adverb (so we use the most common), we

are able to specify as many negation aixes and auxil-

iaries as we find in the corpus.

4.5.5 Coordination

Coordination is possible for a wide range of constituent

types, called coordinands, and can be marked with ei-

ther free or boundmorphemes, called coordinators. Co-

ordinators can aach to all (omnisyndetic), all but one

(polysyndetic), one (monosyndetic) or none (asynde-

tic) of the coordinands (Drellishak, 2004; Haspelmath,

2007). The Grammar Matrix models all of these possi-

bilities and allows us to define any number of strategies

for nouns, noun phrases, verbs, verb phrases and sen-

tences (Drellishak and Bender, 2005).

As with sentential negation, basil identifies IGT

that exhibit coordination based on the English transla-
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tion and then finds the coordinators first by looking for

the word aligned by INTENTwith the English coordina-

tor and then, because alignment isn’t always success-

ful, by looking for the glosses ‘coord’, ‘conj’, ‘cconj’

and ‘and’. Then basil uses the projected dependencies

to collect the dependent of each coordinator and these

dependents are assumed to be the coordinands. As a

fallback, if basil cannot find coordinands via projected

dependencies, it looks for them by collecting the words

that occur in between coordinators, although this ap-

proach is less successful for monosyndetic coordina-

tion. basil then compares the number of coordina-

tors and coordinands to decide if the sentence exem-

plifies asyndetic, monosyndetic or omnisyndetic coor-

dination. Dierentiating between mono- and polysyn-

detic coordination is rather diicult as most examples

in the corpora only have two coordinands, and the con-

struction ‘A and B’ could be either mono- or polysynde-

tic. However, monosyndetic coordination can be used

to model polysyndetic (e.g. [[A and B] and C]), so basil

defaults to monosyndetic in cases that might be mono-

or polysyndetic.

For each coordination strategy, we also identify the

lexical category of the coordinand (noun or verb) and

use heuristics to decide at what level the coordination

takes place (word or phrase in the case of nouns and

word, phrase or sentence for verbs). Because the Gram-

mar Matrix allows any number of coordination strate-

gies, we add each distinct coordination strategy that we

detect in the corpus to the grammar specification.

4.6 Summary

In this section we described four types of inference

that produce the necessary components of our inferred

grammar specifications: lexical, morphotactic, morpho-

syntactic/morpho-semantic and syntactic. For infer-

ence of noun and verb lexical classes and lexical entries,

we rely primarily on the MOM morphotactic inference

system, but make new contributions to lexical inference

in the form of auxiliary, adposition and determiner in-

ference as well as lexical types defined as part of syntac-

tic inference such as negation adverbs or coordinators.

We also leverage MOM to infer morphological rules for

nouns and verbs, and build on the system by improv-

ing the detection of subject and object agreement, as

described in Section 4.5.3, and adding the definitions

of PNG and TAM features to the grammar specifica-

tion, so that these syntactico-semantic features can be

included in the semantic representations. We built on

previous algorithms for inferring syntactic properties

such as word order and case and added new algorithms

for argument optionality, negation and coordination.

The scope of this inference spans a large number of

feature-value pairs in the grammar specification, as we

illustrate in Table 1, and testing the inference for all of

these on real data would require a vast set of datasets

from typologically diverse languages. At the same time,

it is possible that specifications allowed by the Gram-

marMatrix or targeted by basil are not suicient to cor-

rectly model some languages. In the following section,

we describe our data-driven approach to development

in which we considered corpora from a wide range of

diverse languages and from a variety of data formats to

develop and test the algorithms detailed in this section.

5 Development Languages

We developed the inference algorithms described in

Section 4 using a data-driven approach in which

we consulted the typological literature for each phe-

nomenon and actively tested each algorithm on a di-

verse set of languages throughout implementation. In

this section, we describe the languages and datasets we

used during development (§5.1), phenomena that ap-

pear in our datasets, both targeted by basil and other-

wise (§5.2) and basil’s performance on the development

datasets (§5.3).

5.1 Dev Languages and Datasets

In order to thoroughly test basil on the phenomena de-

scribed in Section 4, it is necessary to use languages

that are typologically varied, representing as many lan-

guage families and geographic areas as possible. For

development, we made use of 9 datasets for languages

from 7 language families and 4 continents. In addi-

tion to these core development datasets, we tested indi-

vidual phenomena using datasets from another 18 lan-

guages to span a total of 19 language families and 6 con-

tinents. These languages, their language families and

details of the corpora are listed in Table 2. Their geo-

graphic distribution is shown in Figure 10, with devel-

opment languages in red (1-9) and additional consulted

languages in blue (10-27).
16

Held-out languages which

we discuss in Section 6.3 are in green (28-32).

We selected the core development languages based

on the size and quality of the dataset as well as for

some of the syntactic phenomena exhibited by those

languages. The majority of these corpora come from a

FLEx or Toolbox corpus that was curated by a documen-

tary linguist (or a group of linguists). To support the

development and implementation of inference for spe-

cific syntactic and morpho-syntactic phenomena, we

also consulted additional datasets for languages which

represent those phenomena. These datasets not only

contribute to the diversity of the languages we worked

16
In most cases, these coordinates come from WALS (Dryer and

Haspelmath, 2013). If information from WALS was not available, we

consulted other sources, starting with descriptions of where the lan-

guages are spoken from the reference grammars we worked with.
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Figure 10: Map of the coordinates where languages used in the development are spoken

ISO Number POS tags

Language 639-3 Family Source Type of IGT in source

Development

1 Abui abz Trans-New Guinea Toolbox 1568 yes

2 Chintang ctn Sino-Tibetan Toolbox 9785 yes

3 Matsigenka mcb Arawakan FLEx 349 yes

4 Nuuchahnulth nuk Wakashan FLEx 641 no

5 Wambaya wmb Mirndi Book 818 no

6 Haiki yaq Uto-Aztecan FLEx 2235 yes

7 Lezgi lez Nakh-Daghestanian FLEx 1168 yes

8 Meithei mni Sino-Tibetan FLEx 955 yes

9 Tsova-Tush bbl Nakh-Daghestanian FLEx 1601 yes

Consulted

10 Bardi bcj Nyulnyulan Book 178 no

11 Ik ikx Eastern Sudanic Book 201 no

12 Old Javanese jav Austronesian Toolbox 308 no

13 Yup’ik esu Eskimo-Aleut Book 217 no

14 Basque eus Basque ODIN 1033 no

15 Dutch nld Indo-European ODIN 3543 no

16 Finnish fin Uralic ODIN 3123 no

17 Greek ell Indo-European ODIN 2065 no

18 Hausa hau Afro-Asiatic ODIN 2504 no

19 Hungarian hun Uralic ODIN 2077 no

20 Indonesian ind Austronesian ODIN 1699 no

21 Italian ita Indo-European ODIN 3513 no

22 Japanese jpn Japonic ODIN 6655 no

Book 116 no

23 Korean kor Korean ODIN 5383 no

24 Mandarin cmn Sino-Tibetan ODIN 5045 no

25 Polish pol Indo-European ODIN 2691 no

26 Russian rus Indo-European ODIN 4161 no

27 Turkish tur Altaic ODIN 2617 no

Table 2: Languages used in development
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with, but also to the variety of source formats and

dataset styles. A number of the datasets we consulted

for individual phenomena (languages 14-27) come from

the ODIN corpus (Xia et al., 2016), which is a collec-

tion of IGT scraped from academic papers. We also ex-

tracted four corpora from descriptive grammars, using

the pipeline for extracting IGT from text and converting

it to the Xigt data model developed by Xia et al. (2016).

A full list of citations for the corpora and any descrip-

tive resources we consulted are in Appendix C.

Later in this section, we describe basil’s coverage

over the development datasets. To contextualize that

discussion, we begin with an overview of the languages

and their respective datasets.

Abui [abz] is an Alor-Pantar language in the Trans-

New Guinea language family. It has about 16,000

speakers and is primarily spoken on the Alor island of

Indonesia (Kratochvíl, 2007). This dataset (Kratochvíl,

2019) comes from a Toolbox corpus which contains

about 18,000 sentences from both elicitation and tran-

scribed speech. As part of an ongoing documentation

eort, the dataset is only partially glossed. We fil-

tered the data based on the presence of full segmen-

tation and glossing, and removed duplicates and exam-

ples marked as ungrammatical, to create a dataset of

1,500 sentences.

Chintang [ctn] is a Kiranti language of the Sino-

Tibetan family spoken in Nepal with 4,000-5,000 speak-

ers (Schikowski, 2013). The Toolbox dataset is quite

large, coming from a long-term documentation eort

(Bickel et al., 2013b). We use a fully segmented and

glossed subset of the data containing almost 10,000 sen-

tences. The type of language represented in the corpus

is diverse, containing transcribed conversations, ritual

language, narratives and a few other genres.

Haiki [yaq] is a Taracahitic language of the Uto-

Aztecan family and is spoken by about 21,000 people

in Mexico and the United States (Eberhard et al., 2019).

There are multiple spellings of the name of this lan-

guage, including Yaqui, which is the oicial name of the

tribe in the United States and Mexico; however, Haiki

is the correct spelling in the Pascua Yaqui orthography

(Sanchez et al., 2015). The corpus (Harley, 2019) is quite

large with almost 11,000 IGT, but as with most ongo-

ing projects, is only partially annotated with interlin-

ear glosses and part-of-speech tags. Aer filtering IGT

with no glosses and removing ungrammatical examples

and duplicates, we worked with a set of just over 2,000

IGT.

Lezgi [lez] belongs to the Lezgian subgroup of the

Nakh-Daghestanian language family (Donet, 2014a).

It is spoken by about 400,000 people (Eberhard et al.,

2019), primarily in Daghestan and Azerbaijan (Donet,

2014a). The glossing and POS tagging in this corpus

(Donet, 2014b) are fairly complete, resulting in a set of

over 1,100 IGT aer minor filtering and removing un-

grammatical examples and duplicates.

Matsigenka [mcb] is a Maipurean language of the

Arawakan family spoken in Peru by about 10,000 people

(O’Hagan, 2018). The FLEx corpus (Michael et al., 2013)

is made up of narratives that are fully segmented and

glossed. Of the approximately 5,000 IGT in the corpus,

some have English translations, while the vast majority

of the translations are in Spanish. basil relies on com-

putational resources for English, both through its de-

pendency on the INTENT (Georgi, 2016) system (which

parses the English translation of an IGT and projects

the dependency parses onto the language) and through

the list of English verbs referenced in Section 4.5.3, and

thus basil requires IGT with English translations. From

the full Matsigenka corpus, we
17

identified about 350

IGT with English translations.

Meithei [mni] is a Kuki-Chin-Naga language of the

Sino-Tibetan language family. It is spoken predom-

inantly in Manipur State, but has about 56 million

speakers living across a wide region, including in China,

India, Nepal and Myanmar (Chelliah, 2011). The FLEx

corpus (Chelliah, 2019) contains about 1,800 IGT, but as

part of an ongoing documentation eort, is only par-

tially annotated. Aer filtering for fully-glossed IGT

and removing duplicates and ungrammatical examples,

the corpus has about 1,000 items. Compared to other

corpora in our development set, this corpus contains a

high proportion of complex sentences, which include

subordinate clauses that are not covered by inference.

Nevertheless, it is a strong example for howmuch typo-

logical information can be learned from a corpus, even

when many of the sentences contain phenomena that

are beyond the scope of the inference system.

Nuuchahnulth [nuk] is Southern Wakashan lan-

guage of Vancouver Island in Canada and has only

about 130 fluent speakers (Eberhard et al., 2019). The

FLEx dataset (Inman, 2019b) was curated in connec-

tion with a dissertation on multi-predicate construc-

tions and contains both transcribed narratives and elic-

itations, many of which target this construction. The

dataset includes about 650 examples which are fully

glossed and segmented. Inman’s corpus does not in-

clude POS tags, which are required by MOM to build

the lexicon of nouns and verbs. For many IGT, these are

available from the projected part of speech tags from

INTENT. However, because INTENT does not always

successfully find an alignment (this can be particularly

challenging for polysynthetic languages), we use an ad-

ditional heuristic to identify verbs. Because single-word

sentences are very common in this poly-synthetic lan-

guage, we supplemented the projected POS tags by pre-

17
Most of these were identified by previous research assistants on

the AGGREGATION project and more were extracted by Angelina

McMillan-Major.

Northern European Journal of Language Technology



processing the corpus to assign a verbal POS tag to the

only word in any one-word IGT if the dependency parse

for the translation was headed by a verb.

Wambaya [wmb] is a West Barkly language in the

Mirndi family, which has about 60 speakers (Eberhard

et al., 2019). The Wambaya dataset is distinct from our

other development datasets as it was extracted from the

examples in a descriptive grammar (Nordlinger, 1998).

As such, it does not contain linguist-provided POS tags

and the possibility of alignment errors in the interlin-

earization is higher, due to the process of extracting

IGT from text. Nevertheless, this language illustrates

a number of phenomena that guided our development

and the use of a descriptive grammar allows us to ex-

plore the possibility of inferring grammars to accom-

pany descriptive resources along the lines of Bouma

et al. 2015.

Tsova-Tush [bbl], also referred to by the endonym

Bats or Batsbi, is aNortheast Caucasian language of the

Nakh subgroup of the Nakh-Daghestanian language

family (Hauk and Harris, forthcoming). It is spoken in

Georgia by about 2,500-3,200 people (ibid.). The corpus
(Hauk, 2016–2019) contains elicitation and transcribed

text and the glossing and part of speech tags are almost

complete, including over 1,600 IGT aer removing un-

grammatical examples and duplicates.

5.2 Dev Language Phenomena

In this section we quantify the degree to which the

inference system was tested by the development lan-

guages described above. In Section 4.1, we described

the space of the inference task in terms of the num-

ber of features and values that basil is designed to add

to the grammar specification to account for the phe-

nomena it handles. We identified 50 features with a

fixed set of values (listed in Table 1) totaling 136 possible

values in the Grammar Matrix grammar specifications

that are relevant to the phenomena targeted by basil.

Our system is designed to infer 99 of those 136 values.

When inferring grammar specifications for the 9 devel-

opment languages, 37 of the 50 features and 71 of the

99 values were inferred by basil from the development

data, as detailed in Table 3. We also reported in Sec-

tion 4.1 that basil can identify 116 morpho-syntactic

andmorpho-semantic features from their glosses in the

IGT. 66 of those 116 features are found in the develop-

ment datasets (see Table 4).

While the development languages test a significant

portion of the phenomena targeted by basil, they do

not exhaustively test every facet. For this reason, we

consulted an additional 18 languages (represented in

blue in Figure 10) to test as many of the feature-value

pairs as possible, in order to create a system that would

generalize beyond the development languages.

The phenomena targeted by basil (§4) are only a

subset of the phenomena necessary to fully model a

language or to parse all of the sentences in the corpora.

For this reason, understanding the types of sentences

we do not expect to parse lays the groundwork for un-

derstanding what the inferred grammars should parse,

but don’t. A number of lexical types that basil does not

infer will prevent the grammar from having lexical cov-

erage over sentences that contain those types of words.

These include but are not limited to adjectives, ad-

verbs and ‘particles’ marking complementation, subor-

dination, information structure, questions and posses-

sion. Because these words may be homophonous with

words that basil does handle, sentences with these lex-

ical types may have lexical coverage and the grammar

might even produce one or more parses for them, but

those parses will not be correct. In addition, there are

phenomena whose analysis doesn’t depend on partic-

ular lexical items, but rather phrase structure rules for

specific configurations (e.g. asyndetic coordination) or

lexical rules for particular types of inflection (e.g. imper-

atives), or both in combination (e.g. adverbial clauses

where subordination is marked morphologically). If the

inferred grammars don’t cover a phenomenon, we don’t

expect the grammars to parse sentences including that

phenomenon (correctly, or at all).

Some parses have the correct predicate-argument

structure but lack some semantic features as a result

of out-of-scope syntactic phenomena that contribute

information to the semantic structure. As an exam-

ple, yes/no questions and imperatives are tradition-

ally modeled in the DELPH-IN formalism with the

SF (sentential force) feature, which can have the val-

ues prop (proposition), ques (question) or comm (com-

mand) (Flickinger et al., 2014b). The inferred grammars

for some languages parse questions and imperatives

with the correct predicate-argument structure, but they

do not use the appropriate prop or comm, so the correct

features are not fully specified. With this context estab-

lished, the next subsection presents the performance of

the development grammars.

5.3 Coverage for Dev Languages

We evaluated system performance on the development

languages using 10-fold cross validation. We assessed

the inferred grammars by parsing sentences in their re-

spective test folds, using five metrics: lexical coverage—
the proportion of sentences for which the grammar has

an analysis for each word; parse coverage— the propor-

tion of sentences for which the grammar can produce

a syntactic analysis; correct predicate-argument struc-
ture— the proportion of sentences the grammar parses,

producing a semantic representation that includes ap-

propriate predications and arguments for each seman-

tic entity; correct predicate-argument structure and se-
mantic features— the proportion of sentences for which
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# targeted by # inferred from

Phenomenon # possible inference dev languages

noun lexical entry 4 2 2

verb lexical entry 4 2 2

auxiliary lexical entry 6 4 4

adposition lexical entry 3 3 3

morphological rule 5 5 5

person 9 8 4

tense 2 1 1

word order 10 9 6

determiner order 4 4 4

auxiliary order 9 9 7

case system 9 3 2

argument optionality 18 15 12

sentential negation 41 23 9

coordination 12 11 10

total 136 99 71

Table 3: The number of possible values for the closed set features to define phenomena in the grammar specification

and, those targeted by the inference system and those aested in the development languages

Feature Category # Found

Number 4

Gender 5

Case 21

Tense 6

Aspect 16

Mood 14

Total 66

Table 4: The number of morpho-syntactic features

found in the development languages. (Person features

are not included because the Grammar Matrix defines

them automatically based on the overarching person

system.)

the grammar produces the correct predicate-argument

structure as well as the appropriate PNG and TAM fea-

tures on those arguments and the correct sentential

force; and ambiguity — the average number of results

per sentence that parses. For details on how we opera-

tionalized these metrics, see Section 6.

Table 5 presents the results using these metrics

for each of the development languages. Whereas

calculating the lexical coverage, parse coverage and

ambiguity are automated processes, calculating the

correct predicate-argument structure and features re-

quires manual inspection of the semantic representa-

tions (for a detailed description of these processes, see

§6.1). For this reason, we provide results for correct

predicate-argument structure and correct predicate-

argument structure and features across all folds for lan-

guages with less than 1,000 IGT, but for those withmore

IGT, we provide these metrics only for the first fold.

The sentences for which the grammar produces

a semantic representation with the correct predicate-

argument structure and features are a subset of those

for which the grammar produces a semantic represen-

tation with the correct predicate-argument structure.

In turn, those are a subset of the sentences with parse

coverage, which are a subset of those with lexical cov-

erage. This is illustrated by the bar graph in Figure 11.

To contextualize this performance, remember that

the datasets come from a wide range of sources. Tran-

scribed speech and elicitations oen include sentence

fragments, which the grammar will not accept as sen-

tences. For this reason, and because of the many

out-of-scope phenomena described above, we do not

expect the inferred grammars to parse a very large

portion of the held-out sentences they are tested on.

Instead, the most useful comparison to consider is

the number of sentences that parsed with the cor-

rect predicate-argument structure or correct predicate-

argument structure and features versus the number of

sentences that parsed, but did not have the correct se-

mantic representation.

Previously, lile work has been done that evaluates

inferred grammars on held-out test items. Hellan (2010)

and Hellan and Beermann (2011) do not present any

evaluation for their inference system and Indurkhya

(2020) evaluates his grammars over the same sentences

as were seen in the training set. However, Bender

et al. (2014) and Zamaraeva et al. (2019a) evaluate in-

ferred grammars over held-out portions of the Chin-

tang dataset. Herewe use the same dataset of Chintang

as one of our development sets, so we use Zamaraeva

et al. 2019a as a point of external comparison.

By creating lexical items for determiners, adposi-

tions, coordinators and negation words, we doubled the
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Correct Correct Pred-

Lexical Parse Pred-Arg Arg Strugure

Coverage Coverage Structure and Features Ambiguity

Language [iso] (%) (%) (%) (%)

Abui [abz] 53.19 41.96 10.19* 5.73* 2195

Chintang [ctn] 22.29 12.24 3.58* 1.94* 5562

Haiki [yaq] 17.49 10.29 1.79* 0.89* 161

Lezgi [lez] 7.88 6.08 0.00* 0.00* 10419

Matsigenka [mcb] 12.61 8.02 1.15 1.15 2333

Meithei [mni] 5.86 5.24 1.05 0.42 3722

Nuuchahnulth [nuk] 23.09 10.14 1.87 1.09 265

Wambaya [wmb] 9.41 2.08 0.98 0.12 4

Tsova-Tush [bbl] 28.79 24.05 4.35* 0.00* 3418

Table 5: Coverage and Ambiguity for Development Languages. Results are averages across 10 folds. * indicates results

for only a single fold

Figure 11: Lexical coverage, parse coverage, correct

pred-arg structure and correct features by language for

development languages

number of test items for which the inferred grammars

can analyze each word, compared to Zamaraeva et al.

(2019a) for Chintang. This is critical as the grammar

has no chance at syntactic analysis if lexical analysis

fails. Our lexical coverage averages 20% across the de-

velopment languages. (Here and throughout, we use

macro-averages weighting each language equally.)

The next thing to consider is what portion of the

sentences for which the grammar can analyze each

word can be analyzed syntactically. Zamaraeva et al.’s

inferred Chintang grammar parsed 30% of the sen-

tences it had lexical coverage for. Our inferred gram-

mars have significantly closed that gap, parsing 84% of

the Chintang sentences that had lexical coverage and

67% of the items with lexical coverage on average across

all of the development languages.

The most important metric is the proportion of test

items the grammar parses correctly. On the develop-

ment languages, the number of sentences basil parses

with the correct predicate-argument structure ranges

from 0% to 10%. The number of sentences with cor-

rect predicate-argument structure for Chintang is more

than double what it was for Zamaraeva et al. (2019a)

and the introduction of semantic features increases the

quality of these parses. basil has more spurious cover-

age than the system of Zamaraeva et al. (2019a), which

correctly parsed 47% of its parsed sentences. basil pro-

duced parses with correct predicate-argument struc-

ture for only 19% of the Chintang sentences it parsed;

however, for 9% of the sentences it parsed, basil also

included the correct features in the semantic represen-

tation.

Finally, measuring ambiguity shows how many in-

correct or redundant parses are produced by the gram-

mar. Ideally, this should be minimal, as in Wambaya,

for which our inferred grammars average four parses

per sentence. However this average increases when

there are multiple analyses for a morphological or syn-

tactic phenomenon, some of which are valid and some

of which are not. We go into this in more detail in Sec-

tion 8.3wherewe compare the ambiguity of the inferred

grammars with baseline inference systems. At this

stage, we simply note that there is an inherent trade-

o between coverage and ambiguity in inferred gram-

mars, just as in hand-craed grammars: Where sen-

tences may seem unambiguous to humans, who have

the benefit of context and world knowledge, computers

are much beer at finding alternative, oen pragmati-

cally odd, analyses. The more phenomena a grammar

includes, the more such analyses are available.
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5.4 Summary

In this section we described the languages and datasets

that we used during development and assessed basil in

terms of how it performs on them. We primarily used 9

development languages from 7 language families, but at

times consulted others for a total of 27 languages from

19 families, in order to make basil as robust to cross-

linguistic variation as possible. We showed that the 9

development languages tested most of the phenomena

targeted by the inference system and performed well in

terms of producing grammars that handle those phe-

nomena correctly. With this performance at the end

of development, we turn to evaluation on held-out lan-

guages to determine how well basil generalizes to pre-

viously unconsidered languages.

6 Evaluation Methodology

In Section 5, we present results for our development

languages, where system development benefited from

close error analysis. We use the same methodology to

evaluate the system on held-out data fromheld-out lan-

guages. As above, we use the full end-to-end pipeline

described in Section 3, with 10-fold cross-validation,

and report the same five metrics from Section 5.3:

lexical coverage, parse coverage, correct predicate-

argument structure, correct predicate-argument struc-

ture and semantic features, and ambiguity. In this sec-

tion, we describe how we measured these (§6.1), and

present our baseline system (§6.2) and test languages

(§6.3). The following sections (§§7–8) present our re-

sults and error analysis on the held-out languages.

6.1 Evaluation Metrics: Parsing and

Treebanking

Aer inferring a grammar from the training data, we

use the ACE parsing soware (Crysmann and Packard,

2012) to parse each sentence in the test dataset (links

to ACE and other soware used for evaluation can be

found in Appendix B). For each sentence, ACE outputs

whether the grammar had a lexical analysis for each

word in the sentence, from which we calculate lexical
coverage. If each word has an analysis and the gram-

mar accepts the sentence as grammatical, ACE returns

a result which includes the syntactic parse trees and

corresponding semantic representations (illustrated in

Figures 12 and 13), and on this basis, we calculate parse
coverage. In many cases the grammar contains ambigu-
ity, returning multiple parses per sentence, and we re-

port this as the average number of results for sentences

that parse.

The process of finding the correct predicate
argument-structure (and semantic features) is more

involved. Aer parsing the test sentences with ACE,

we use the Full Forest Treebanking soware (FFTB;

Packard, 2015) to examine the lexical and syntactic

rules in the parse forest to identify any trees that rep-

resent an appropriate syntactic parse for the sentence.

We then inspect the corresponding semantic structure

by looking at the predicate-argument structure as

well as the semantic features on each argument.

Consider the syntactic and semantic representations in

Figures 12 and 13 which were produced by an inferred

grammar for the Matsigenka sentence in (6).

(6) Ikamagutakerotyo.

i-kamagu-t-ak-i=ro=tyo

3mS-look-epc-perf-realis=3fO=affect

‘He looked at it.’ [mcb] (Michael et al., 2013)

S

VP

V

V

V

V

V

V

V

i-kamagu-t-ak-i=ro=tyo

3m-subj-lex-rule

unspec-lex-rule-118

pfv-lex-rule

realis-lex-rule

3f-obj-lex-rule

unspec-lex-rule-218

head-opt-comp

head-opt-subj

Figure 12: The syntax tree corresponding to the seman-

tic representation in Figure 13

_look_v

TOP

_look_v (

ARG0 {ASPECT pfv,MOOD real,},
ARG1 {PER 3rd, GEND m },

ARG2 {PER 3rd, GEND f })

Figure 13: The best semantic representation produced

by the inferred grammar for the sentence in (6)

18
We use ‘unspec’ as a naming convention for lexical rules that do

not add any morpho-syntactic or morpho-semantic features.
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Sentence (6) has only one word
19
but includes three

semantic arguments: an event and two entities. For this

reason, the tree in Figure 12 contains a series of lexical

rules (the nodes labeled as V) and two syntactic rules

(object dropping, labeled by VP, and subject dropping,

labeled by S).
20
The semantic dependency contains only

one predicate, which is contributed by the verb kamagu
‘look’. That predicate has three arguments. First is the

event argument (ARG0), which is marked with perfec-

tive aspect and realis mood. Next there is the seman-

tic argument (ARG1) corresponding to the unexpressed

subject, which is marked with third person and mascu-

line gender, and third is the semantic argument (ARG2)

corresponding to the unexpressed object, marked with

third person and feminine gender.

We consider the semantic representation in Fig-

ure 13 to have the correct predicate-argument structure

because it contains all of the predications that should

be in the semantic representation and no additional, in-

correct predications, and because the predication has

the correct arguments: an event and two entities. We

consider the semantic features in Figure 13 to be correct

because they reflect all of the semantic features that A)

are in the IGT and B) the inference system targets: basil

only targets PNG and TAM features, so those are the

only ones we expect. The semantic representation does

not reflect the aectivemeaning because basil does not

extract stance features.
21

Although using treebanking to check parses for cor-

rectness is an established practice (see inter alia Oepen

et al., 2002; Flickinger et al., 2017), assessing the ac-

curacy of semantic representations for languages that

one doesn’t speak fluently and isn’t an expert on is

a challenging task. For example, it can be hard to

know if some locative dependents are core arguments

of the verbs or if they aremodifiers. Furthermore, gloss-

ing conventions vary from linguist to linguist and with

limited familiarity with the datasets, one must make

guesses as to implications of some grams and the am-

biguous cases one might encounter are diicult to an-

ticipate without first engaging with the data. There-

fore, we established a practice of consulting both the

gloss line and the translation line as the translation line

might omit or add some semantic information com-

pared to the gloss line, but the gloss line may be am-

biguous with regards to which words are arguments

19
Although Michael et al. use an = to indicate two clitics (=ro and

=tyo), basil analyzes them as aixes. We made this analytical choice

because = in IGT frequently indicates less phonologically integrated

aixes, rather than clitics in the sense of Zwicky and Pullum (1983).

20
The treatment of these arguments as a dropped subject and ob-

ject is consistent with Inman’s (2015) analysis of pronoun incorpora-

tion in Matsigenka.

21
The gloss affect is not explicitly defined by Michael (2008), but

from his discussion around such examples, we believe that this refers

to stance. We assume that epc marks an epenthetic consonant, and

does not contribute any semantic feature.

Abui [abz] Chintang [ctn]

Correct Parse 0.5714 0.7843

Matching Pred-Arg

Structure 0.5714 0.7843

Matching Features 0.5714 0.5882

Exact Match MRS 0.5143 0.5882

Table 6: F1 scores for inter-annotator agreement on

treebanked coverage for Abui and Chintang

of which and this can be learned from the transla-

tion.
22

Aer developing basic guidelines by discussing

some specific examples from the development datasets,

the authors of this paper independently treebanked

one fold from each of the Abui and Chintang datasets.

These folds contained approximately 100 parsed IGT

each.

Following the methodologies set forth by Dridan

and Oepen (2011) for semantic evaluation and Bender

et al. (2015) for inter-annotator agreement (IAA), with

some adaptations to target our task-specific goals, we

calculated IAA for the treebanked results of the two de-

velopment sets, which we present in Table 6. Dridan

and Oepen (2011) propose an Elementary Dependency

Match (EDM) score calculated from multiple parts of

the semantic representation. We used their EDMna

metric for naming and argument identification, and

added a metric for semantic features. Following Ben-

der et al. (2015), and in light of the lack of chance-

corrected metrics for such structures, we assess IAA for

these metrics by calculating the F1 score for these met-

rics between the two annotators. These F1 scores are

shown in Table 6 as Matching Pred-Arg Structure and

Matching Features. To situate these measures we also

present F1 scores for IAA for whether the parses for the

item were considered to include one that was correct

(Correct Parse) and whether the two semantic repre-

sentations matched exactly (Exact Match MRS).

The F1 score for correct parse is the same for match-

ing predicate-argument structure, which shows that

when we agreed that there was a parse with an ac-

ceptable predicate-argument structure, we also agreed

onwhat that predicate-argument structure should be.
23

Disagreements were oen due to one author interpret-

ing something as amodifier instead of an argument (the

inferred grammars do not handle modifiers, so these

parses would be rejected) or whether sentence frag-

ments should be accepted or rejected, given an other-

wise correct semantic representation.

The slightly lower F1 for Exact Match MRS for Abui

is due to a slightly dierent but equally acceptable

22
This is based on Bender’s previous treebanking work in Bender

2008a, Bender et al. 2014 and Zamaraeva et al. 2019a.

23
This does not necessarily mean that we chose the same syntactic

parse, as spurious ambiguity may result in multiple syntactic struc-

tures producing the same semantic representation.
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predication for the verb in one sentence: leave.for_v_rel

vs. leave.for-or-step_v_rel, where the second represents

two possible meanings of the verb. For Chintang the

feature agreement is lower than predicate-argument

structure agreement. For this language the grammars

have a great deal of ambiguity in the lexical rules. In

many cases, it was not possible to find a parse that had

all of the correct features, and we chose parses with dif-

ferent subsets of correct and incorrect features.

Aer discussing our disagreements, we extended

our definitions of correct parses. For all held-out lan-

guages a single author treebanked the results, accord-

ing to the conventions decided through this process.

6.2 Baseline

The primary contribution of this paper is in infer-

ring syntactic properties from IGT data and integrat-

ing these with lexical and morphological properties in-

ferred by MOM (Wax, 2014; Zamaraeva, 2016; Zama-

raeva et al., 2017). Therefore we compare our results

to three baseline systems that are morphologically and

lexically robust with respect to accounting for the train-

ing data, but are syntactically naive. Each of these use

lexical entries and morphological rules from MOM for

nouns and verbs. Although MOM extracts morpho-

syntactic features for nouns and verbs and adds them

to the lexicon and morphological rules, inference is re-

quired to define them appropriately in the grammar

specification. Because a grammar specification with

morpho-syntactic features on verbs and lexical entries

with no definition of those features would not result in

a working grammar we disable the feature extraction in

MOM for all baselines.

Table 7 enumerates the syntactic specifications

for our baseline systems. The first baseline (broad-

cov) posits the specifications for each syntactic phe-

nomenon we account for that we expect to result in the

broadest coverage, given no specific knowledge of the

language. The second baseline (typ) posits the speci-

fications that are typologically most common, accord-

ing to the information available in WALS (Dryer and

Haspelmath, 2013) and other typological resources. If a

typologically-most-frequent choice could not be made,

we select the specification at random if it is required by

the GrammarMatrix, and omit it otherwise. Aside from

specifications made at random (which are chosen with

each run), the syntactic specifications under the broad-

cov and typ baselines are the same for all grammars,

that is, they do not vary in response to the data pre-

sented. Finally the third baseline (rand) selects a value

for each specification at random. The baseline systems

make a dierent random choice for each rc specifica-

tion every time they are run, therefore the values in the

baseline files for each fold of training data are dierent.

broad-cov typ rand

word order free sov rc

has determiners yes yes rc

noun-det order rc noun-det rc

det required optional rc rc

has auxiliaries no no no

verb valence trans rc rc

case frame none none none

s coordination asyndeton rc

vp coordination asyndeton rc

np coordination asyndeton rc

n coordination asyndeton rc

subj-drop all all rc

obj-drop all rc

Table 7: Grammar specifications for syntactic phenom-

ena for three baseline systems. rc indicates a random

choice

ISO Number of POS tags

Language 639-3 Source of IGT in source

Arapaho arp Toolbox 5000 yes

Hixkaryana hix Toolbox 5749 yes

South Efate erk Toolbox 1875 yes

Titan v Toolbox 1799 yes

Wakhi wbl FLEx 683 yes

Table 8: Source, number of IGT and presence of POS

tags for the held-out datasets

6.3 Held-out Languages

To test how well basil generalizes to new languages, we

acquired datasets for five additional languages, which

we did not consider during development and which are

genealogically and geographically varied from the de-

velopment languages. These languages are listed in

Table 8 and the locations where they are spoken are

shown in green on the map in Figure 10.

We pre-processed each dataset by filtering out un-

grammatical examples (examples marked with a *) and

removing duplicates. For held-out evaluation, we se-

lected only languages with POS tags in the original

dataset. This information as well as the type of source

dataset and the number of IGT aer filtering are sum-

marized in Figure 8. In this section, we provide a brief

description of each language and dataset. For a full list

of citations for datasets and descriptive resources ref-

erenced in this section, see Appendix C.

Arapaho [arp] is an Algonquian language of the Algic

language family with only about 250 native speakers

in the United States (Cowell and Moss Sr, 2011). The

dataset we use is a 5,000 item subset of a ~60,000 IGT

corpus (Cowell, 2018), randomly selected from fully-

glossed examples. The corpus includes elicitations and

transcribed conversations, among other genres.

Hixkaryana [hix] is a Cariban language in theWaiwai
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subgroup with about 1,200 speakers (Eberhard et al.,

2019). Aer removing IGT with incomplete glosses, the

corpus (Meira, 2020) contains almost 6,000 IGT.

South Efate [erk] is a Vanuatu language of the

Austronesian language family, spoken by about 6,000

people on the Efate island in the Republic of Vanu-

atu (Thieberger, 2006b). From the 3,000 IGT corpus

(Thieberger, 2006a), we use 1,900 fully glossed exam-

ples.

Titan [v] is also an Austronesian language, and while

it and South Efate are both Oceanic, Titan is grouped as

a language of the Admiralty Islands while South Efate is

Central-Eastern Oceanic. The various dialects of Titan

are spoken by approximately 3,500-4,500 people (Bow-

ern, 2011). This corpus contains just under 1,800 IGT

aer filtering for glossing (Bowern, 2019). For this cor-

pus, we obtain POS tags from the accompanying Tool-

box lexicon. This introduces some noise, due to lexical

ambiguity, but less than if we had used the projected

POS tags from INTENT.

Wakhi [wbl] is an Iranian language of the Indo-

European language family and is spoken primarily in

Afghanistan and has a growing speaker population

of about 17,000 (Eberhard et al., 2019). The dataset

is small, containing only about 700 IGT aer filter-

ing (Kaufman et al., 2020). However, it is thoroughly

glossed and is made up primarily of elicitations target-

ing specific syntactic phenomena.

7 Results

Using the methodology in Section 6, we performed ten-

fold cross-validation on the evaluation languages for

the basil inference system and the three baselines de-

scribed in Section 6.2.
24

We show lexical coverage in

Table 10, parse coverage in Table 11, coverage with cor-

rect predicate-argument structure in Table 12, coverage

with correct predicate-argument structure and seman-

tic features in Table 13 and ambiguity in Table 14.

For each language, we treebanked n folds such

that the number of parsed sentences in n folds is

greater than 100. The results for lexical coverage,

parse coverage and ambiguity are averages across

ten folds, while the results for coverage with correct

predicate-argument structure and coverage with cor-

rect predicate-argument structure and features are av-

erages across n folds where n is given in Table 9.

There is a great deal of variation in how well any

of the systems did at inferring grammars that can

parse held-out sentences for each language, as illus-

trated by the graph in Figure 14. Coverage for Ara-

paho was very low, at roughly 3% lexical coverage for

each system and similar parse coverage for basil and

24
The code to reproduce these results is available at https://

git.ling.washington.edu/agg/repro/basil-2020.

Tree- Parsed Total

banked sentences sentences

Language folds (n) in n folds in n folds

Arapaho [arp] 7 109 3500

Hixkaryana [hix] 1 198 575

South Efate [erk] 7 110 1504

Titan [v] 6 110 1080

Wakhi [wbl] 5 115 345

Table 9: Number of sentences treebanked across n folds
for each held-out language

broad-cov. Across all systems, Hixkaryana and Wakhi

had significantly higher lexical and parse coverage, ex-

ceeding basil’s performance on most of the develop-

ment languages. South Efate and Titan fall between

these two extremes. The correct coverage is more

consistent across languages with Wakhi as an outlier.

For Wakhi, basil achieves correct predicate-argument

structure for 14.20% of the items in the test set and

correct predicate-argument structure and features for

5.8% and the broad-cov baseline achieves 12.75% cor-

rect predicate-argument structure, while the remain-

ing languages have much lower correct coverage across

systems. Finally, the ambiguity (or average number of

parses per parsed item) for these languages is quite low

for Wakhi, on the order of tens, and extremely high for

South Efate, on the order of 100,000. We provide more

detail on the causes of ambiguity in the inferred South

Efate grammar in Section 8.3.

Overall, the systems performed best on Wakhi

across the five metrics. Performance for Hixkaryana,

South Efate and Titan was somewhat lower, with cov-

erage for Arapaho being the lowest. In Sections 8.1 and

8.2, we explore sources of this variation, including char-

acteristics of the languages and of the IGT datsets.

To understand the impact of syntactic inference on

automatic grammar generation, we compare basilwith

three baselines that use the samemorphotactic and lex-

ical inference system as basil, but must specify the syn-

tactic portions of the grammar specification through

some other means. The broad-cov system uses the

specifications that are expected to parse the most sen-

tences, whether correctly or incorrectly. typ uses the ty-

pologically most common specification and rand uses

a random choice (for details, see §6.2). Each of these

baselines uses a random choice for at least one speci-

fication, where no clear determination could be made

for broad coverage or typological frequency, so ten-fold

cross validation (given that a new random choice is

made when specifying the grammar for each fold) is

important to reduce the eect of chance on the overall

performance of each baseline.

Because the same morphotactic and lexical infer-

ence system was used for the baselines as for basil,

the lexical coverage across systems is roughly compa-
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Language basil broad-cov typ rand

Arapaho [arp] 3.64 3.52 3.64 3.18

Hixkaryana [hix] 38.09 36.01 35.88 35.92

South Efate [erk] 12.80 13.55 14.29 13.17

Titan [v] 13.56 19.40 20.34 19.40

Wakhi [wbl] 39.68 29.72 31.48 31.04

Table 10: Lexical coverage for held-out languages as a

percentage of the total number of test items across ten

folds

Language basil broad-cov typ rand

Arapaho [arp] 3.04 3.06 0.50 0.26

Hixkaryana [hix] 34.18 31.28 2.80 1.25

South Efate [erk] 6.77 9.81 0.27 0.27

Titan [v] 10.34 16.18 0.06 0.17

Wakhi [wbl] 30.31 24.89 10.25 3.22

Table 11: Parse coverage for held-out languages as a

percentage of the total number of test items across ten

folds

Language basil broad-cov typ rand

Arapaho [arp] 0.17 0.20 0.00 0.03

Hixkaryana [hix] 2.26 2.26 1.57 0.52

South Efate [erk] 0.38 0.31 0.00 0.00

Titan [v]
25

0.28 0.65 0.09 0.19

Wakhi [wbl] 14.20 12.75 2.61 0.58

Table 12: Coverage with correct predicate-argument

structure as a percentage of the total number of test

items across n folds

Language basil broad-cov typ rand

Arapaho [arp] 0.09 0.06 0.00 0.00

Hixkaryana [hix] 0.00 0.00 0.00 0.00

South Efate [erk] 0.15 0.00 0.00 0.00

Titan [v] 0.19 0.00 0.00 0.00

Wakhi [wbl] 5.80 0.58 0.00 0.00

Table 13: Coverage with correct predicate-argument

structure and semantic features as a percentage of the

total number of test items across n folds

Language basil broad-cov typ rand

Arapaho [arp] 145 936 4 3

Hixkaryana [hix] 5642 15596 2 6

South Efate [erk] 126379 9759 2 4

Titan [v] 595 6201 2 1

Wakhi [wbl] 10 26 1 2.5

Table 14: Average number of results per parsed sentence

for across ten folds

Figure 14: Lexical coverage, parse coverage, correct

pred-arg structure and correct features by language for

held-out languages

rable. For some languages, the baseline lexical cover-

age is lower because the baselines can only use POS

tags to identify lexical items, while basil uses addi-

tional heuristics. For other languages, it is slightly

higher because basil strategically excludes ditransitive

and clausal complement-taking verbs (which it would

not handle correctly) from the lexicon.
26

Additional

variation in the lexical coverage across systems can be

aributed to variations in the morphological graph: It

is dierent for each baseline, because it is sensitive to

verb valence assignments and these are done at random

in each run for the typ and rand baselines.

A larger and more meaningful dierence between

the systems is seen in parse coverage. Here, the typ

and rand baselines have much lower coverage than

basil and broad-cov. While the typ baseline has a

beer chance of using the correct value for each in-

dividual specification, it will not necessarily be cor-

rect for enough phenomena to produce a grammar that

can parse simple sentences: For example, even if the

order of verbs with respect to subjects and objects is

correct, sentences with determiners won’t parse if the

determiner-noun order is incorrect. By design, the

broad-cov system has the highest parse coverage, of-

ten outperforming basil; however, without syntactic in-

25
For Titan we report a correct coverage that is higher than the

parse coverage for the typ and rand baselines. This is possible be-

cause there were more parsed items per fold in the 6 folds we tree-

banked than in the remaining 4.

26
basil cannot properly account for ditransitives as they are not

currently supported by the Grammar Matrix. Clausal complement-

taking verbs have also been le out of scope at this time.
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ference this coverage could be spurious, so we must

consider correct coverage (described in §6.1). Again,

the typ and rand baselines under-perform the other

systems, as there is a relatively low chance that their

specifications will correctly model any given language.

In terms of correct predicate-argument structure, basil

outperforms broad-cov for South Efate and Wakhi,

while broad-cov does beer for Arapaho and Titan.

They tie on Hixkaryana. As broad-cov is designed to

maximize coverage, it specifies asyndetic coordination

for each language, enabling it to parse sentences for

languages where basil failed to infer this strategy. For

correct predicate-argument structure and semantic fea-

tures, basil outperforms all baselines, as they cannot

posit semantic features. Only in rare cases did broad-

cov have the ‘correct features’, because the semantic

representation shouldn’t include any features at all.

So far, we have shown that basil and broad-cov

out-perform the other two baselines in parse coverage

and correct predicate-argument structure, while basil

out-performs all of the baselines in correct predicate-

argument structure and semantic features, as illus-

trated in Figure 14. The last thing to consider is how

much ambiguity each of the grammars contain. typ

and rand produced grammars with very lile ambigu-

ity. These grammars only parsed simple sentences, so

low ambiguity is not surprising. broad-cov was de-

signed to maximize coverage, but this comes at the cost

of increased ambiguity. For example, positing free word

order for each language will ensure that all word orders

will parse, but will also allow parses where the wrong

constituents are identified as subjects and objects. As a

result, the broad-cov baseline has significantly higher

ambiguity than basil for all languages but South Efate.

While the results show a great deal of variation

across the test languages, basil and broad-cov outper-

form the typ and rand baselines for most metrics. basil

and broad-cov perform fairly comparably for a number

of the metrics, but basil excels in two areas. First, basil

generally has fewer parses per test item than broad-

cov, suggesting that there is less spurious ambiguity

in the inferred grammars than in that baseline. While

typ and rand have even lower ambiguity scores, they

also have such low coverage that this is not an advan-

tage. Second, the semantic representations produced

by basil are more correct in that they contain seman-

tic features, resulting in higher scores for the correct

predicate-argument structure and features metric.

8 Error Analysis

8.1 Out of Scope Phenomena

We begin our error analysis by establishing first what

we do not expect basil’s grammars to parse. Focusing

on sentences where lexical coverage was achieved but

the sentence did not parse or parsed incorrectly, we de-

scribe phenomena that are frequent in the test data but

are beyond the scope of the current inference system.

basil currently handles a number of lexical types

such as transitive and intransitive verbs, auxiliaries,

nouns, determiners and case-marking adpositions, as

well as phenomena including word order, case, argu-

ment optionality, sentential negation and coordination.

However, it does not yet handle a number of very com-

mon phenomena such as adjectives, adverbs, ditransi-

tive or clausal complement-taking verbs, content ques-

tion words, possessives, etc. Therefore, sentences con-

taining these lexical items will only have lexical cover-

age if a lexical item was inferred in error. At the same

time, sentences that contain these syntactic phenom-

ena will not parse at all or will not parse correctly.

In particular, frequent error types include: (i) verb

valence, where basil posited intransitive or transitive

entries for verbs which were actually ditransitive or

clausal-complement taking; (ii) adnominal possession,

where grammars produced by basil parsed but could

not aribute the correct semantics to examples with

possession; (iii) vocatives analyzed as subjects or ob-

jects; (iv) sentence linkers parsed as coordination; and

(v) disfluency markers (e.g. P for ‘pause’) analyzed as

verbs.

8.2 In Scope Phenomena

Whereas the previous section described common errors

due to out of scope phenomena in the test data, this

section focuses on errors due to basil failing to cor-

rectly infer phenomena that it was designed to handle.

The sources of these errors range from the input data

to problems with basil’s inference algorithms or their

implementation.

8.2.1 Wrong Part-of-Speech

Both basil and MOM rely on POS tags in the input to

identify nouns and verbs. In some cases, the POS tag

in the corpus may be incorrect. For example, in (7) the

word titko is glossed as ‘brazil.nut’ but marked with a

verbal POS tag. Such errors are not uncommon, as even

the most careful human annotation is subject to error.

(7) Tutko

titko

Brazil.nut

Vt

yakahetxkoni.

y-akaha-yatxkoni

rel-break-dpst2:col

prs-Vt-tamn

‘They were shelling Brazil nuts.’ [hix] (adapted

from Meira, 2020)

Because titko is glossed as a verb, the inferred gram-

mar treats it semantically as an event instead of as a
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participant of the breaking/shelling event, resulting in

an incorrect semantic representation.

8.2.2 Wrong Predication

We considered it an error anytime the predication as-

sociated with a word did not reflect the meaning in

the gloss, even if the overall shape of the predicate-

argument structure was correct. This can occur if

MOM’s heuristics for locating the root of a word fail in

a particular case. For example, the IGT in (8) had spaces

on both sides of the second hyphen. MOMguessed that

the hyphen belonged to neeni, which in turnmeant that

t was the root, leading to a lexical entry with the pred-

ication _3.S_v_rel.

(8) Nehe’

nehe’

this

hinen

hinen

man

nihneenit.

nih-

PAST-

neeni

itis

-

-

t

3.S

‘The man was the one.’ [arp] (adapted from Cow-

ell, 2018)

8.2.3 Missed Semantic Features

basil’s greatest advantage over the baseline systems is

its addition of semantic features to the grammars, but it

still made some errors in feature inference. There is sig-

nificant variation in the way linguists gloss syntactico-

semantic features, and basil’s most straight-forward

source of error for semantic features was in not prop-

erly identifying all grams in the held-out corpora. basil

uses a large dictionary of glosses, which it maps to

116 common PNG, TAM and case grams to identify

morpho-syntactic and morpho-semantic features (see

§4.1). Even so, the held-out corpora included grams

that were not in this dictionary. In particular, this dic-

tionary did not include any glosses for the pluperfect

aspect ‘plpf’, which appears in Wakhi, the immediate

past ‘ipst’ or distant past ‘dpst’ used in Hixkaryana, or

the narrative past ‘narrpast’ used in Arapaho. In ad-

dition, while the dictionary included ‘d’ as a gloss for

dual number and quite a few person and number com-

binations (e.g. ‘3du’), it did not contain ‘3d’ which is

used for third person, dual number in the South Efate

corpus. This led to test items, which otherwise parsed

correctly, not including all of the semantic features.

8.2.4 Auxiliaries

basil treats words that have only TAM and/or PNG

agreement features as auxiliaries (see §4.5.1). The abun-

dance of TAM auxiliaries in the held-out languages,

such as the future tense auxiliary in (9), revealed a

bug in our implementation of auxiliary inference. The

clause in basil’s code that infers where the auxiliary oc-

curs (before or aer its complement) assigns the wrong

value. This caused some inferred grammars to require

auxiliaries aer their verbal complements instead of be-

fore. Though our development languages included aux-

iliaries, these freer word order languages (Wambaya

and Nuuchahnulth) did not reveal this bug.

(9) Tumr@
tumr@
fut

maü
maü
1sg.obl

jiu.

jaw-tu

eat-plpf

‘I will have had eaten.’ [wbl] (adapted from Kauf-

man et al., 2020)

8.2.5 Coordination

Coordination inference, described in Section 4.5.5, errs

on the side of positing VP coordination unless it finds

explicit evidence of S coordination in the form of a pro-

jected subject dependency that intervenes between the

coordinator and a verb in the coordinand. This algo-

rithm may be too aggressive because dependency tag

projection is not always successful. In addition to that,

the algorithm does not consider cases where the sub-

ject is dropped or cases where there is no coordinator,

because an asyndetic strategy is employed. Because

the inference of S coordination relies on an overt co-

ordinator, sentences like the one in (10) from Titan are

taken by basil as evidence of VP coordination instead

of S even though each coordinand has an overt subject.

Thus asyndetic S coordination isn’t added to the gram-

mar and examples like this can’t be parsed.

(10) I

i

3sg

ani

ani

eat

pou

pou

pig

i

i

3sg

ani

ani

eat

ma.

ma

taro

‘He ate the pig and he ate the taro.’ [v] (adapted

from Bowern, 2019)

In addition, examples of monosyndetic S coordination

inWakhi weremisclassified as VP coordination because

of failure to align the subjects between the English

translation and the sentence. This prevented basil from

inferring S coordination strategies and adding them

to the grammar specifications. Because the broad-

cov baseline posits asyndetic S coordination for all

languages, that baseline was able to correctly parse

sentences with asyndetic S coordination in Titan and

Wakhi, giving it a boost in coverage over basil.

8.2.6 Case Frame

Finally, basil relies on the overt case markings on the

subject and object (according to projected dependen-

cies), to account for quirky case (§4.5.2). However, if no

overt argument is found, the verb’s case frame remains

under-specified until it is mergedwith another instance
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of the same verb. Even though basil inferred the over-

arching nominative-accusative paern for Wakhi, it

found verbs in the training data with oblique subjects

which were merged with verbs that did not have overt

case marking on their subjects. Because of this, the in-

ferred grammars for some of the Wakhi folds included

a rather large transitive verb class with oblique case on

the subject, resulting in a number of IGT with overtly

marked nominative subjects in the test data that did

not parse.

8.2.7 Summary

The majority of errors discussed in this section come

from lexical inference. Beyond that, we identified three

main sources of error in the syntactic specifications.

One was a bug that resulted in auxiliaries having the

wrong order with respect to their complements. Resolv-

ing this bug is trivial, while the errors in S coordination

and case-frame inference require some re-designing of

the algorithms. In particular, basil requires too much

evidence to infer S coordination. As future work, we

propose modifying the algorithm to rely less on pro-

jected dependencies and instead to leverage the depen-

dency parse of the English translation to distinguish be-

tween VP and S coordination in the translation. The

same redesign could be applied to N and NP coordina-

tion as well. The case frame inference algorithm may

assign quirky case too readily and rather than merging

lexical items with no case frame with those that have

quirky case, should assign default case to those verbs

unless a verb with the same orthography is found with

quirky case in the corpus. Alternatively, beer verb

classes could be inferred with some re-tooling of the in-

teraction between basil and MOM, so that case frame

inference happens aer morphotactic inference, similar

to the pronoun and auxiliary inference methodologies

in Section 4.2.2.

8.3 Ambiguity

basil’s inferred grammars generally had less ambigu-

ity than the broad-cov baseline for two intuitive rea-

sons. First, the free word order, argument optional-

ity and coordination specifications in broad-cov intro-

duce a lot of ambiguity in the number of ways nouns

and verbs can combine. Second, basil’s specifications

for case frame and agreement further constrain which

arguments can be subjects and objects, even in freer

word order languages. In spite of this, basil’s grammars

for South Efate have significantly more ambiguity than

broad-cov’s. To shed light on this, we present a specific

example from the fourth test fold from South Efate.

First of all, basil infers free word order, subject and

object dropping and asyndetic coordination for VPs and

NPs for this fold. Because of this, basil’s inferred gram-

S

VP

VP

V

V

V

kai=ler

unspec-lex-rule-2

head-opt-comp

vp-boom-coord
VP

NP

N

natus

bare-np
V

V

V

i=tut-ki

3rd-subj-lex-rule

unspec-lex-rule-1

head-comp

vp-top-coord
NP

N

Samuel

bare-np

subj-head

Figure 15: The parse tree generated by the basil and

broad-cov grammars that corresponds with the se-

mantic representation in Figure 16 for the sentence in

(11)

_name_n exist_q _drown_v _paper_n exist_q _return_v _and_coord

TOP

RSTR/H

ARG1/NEQ

ARG2/NEQ

RSTR/H

ARG1/NEQ

L-INDEX/NEQ

R-INDEX/NEQ

Figure 16: The best semantic representation generated

by the basil and broad-cov grammars for the sentence

in (11)

mar is not less ambiguous than broad-cov in those ar-

eas. In order to understand why basil’s grammar is

evenmore ambiguous than broad-cov’s, we explore the

parse forest for the sentence in (11), which has asynde-

tic coordination, lexical ambiguity, morphological am-

biguity and no overt case marking.

For this sentence, basil’s grammar produces 2448

trees, while broad-cov’s produces 19.
27

The best read-

ing, produced by both grammars, is shown in the parse

tree in Figure 15 and semantic representation in Fig-

ure 16.

(11) Samuel

Samuel

Samuel

itutki

i=tut-ki

3S.rs1-drown-tr

natus

natus

paper

kailer.

kai=ler

es1-return

‘Samuel threw in the paper and went back.’ [erk]

(Thieberger, 2006a)

We use the Full Forrest Treebanking soware

(FFTB; Packard, 2015) to eiciently investigate such

large parse forests with discriminant-based tree selec-

tion (Carter, 1997). Figure 17 shows the choices among

discriminants that we used to single out the tree in Fig-

ure 15 from the other 2447 trees in the parse forest.

The discriminants in Figure 17 are not ordered, and

represent one of many paths in the decision space. The

boom 4 choices in the decision tree result in no dier-

ence in the semantic representation, yet combined they

increase the ambiguity by a factor of 16. The no-drop-
lex-rule is added by the Grammar Matrix’s argument

27
These numbers are estimates provided by FFTB based on the

packed forest, as opposed to ACE, which we used for Table 14.
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subj-head

yes

1368

vp-top-coord

yes

576

head-comp

yes

288

unspec-verb-pc

yes

144

n-coord

yes

96

no

48

n-coord

yes

32

no

16

at-lex-rule

yes

8

no

8

at-lex-rule

yes

4

no

4

no-drop-lex-rule

yes

2

no

2

no-drop-lex-rule

yes

1

no

1

no

144

no

288

no

792

no

1080

Figure 17: A decision tree illustrating the syntactic and

lexical rules that discriminate between dierent parse

trees produced by basil’s grammar for the sentence in

(11). The path in green shows the rules that we selected

or excluded to identify the parse tree shown in Figure 15

subj-head

yes

4

head-comp

yes

1

no

3

no

15

Figure 18: A decision tree illustrating the syntactic and

lexical rules that discriminate between dierent parse

trees produced by the broad-cov grammar for (11)

optionality library (Saleem, 2010; Saleem and Bender,

2010). This rule is intended to be further constrained by

agreement restrictions for dropped arguments, but be-

cause basil does not add this information to the gram-

mar, these optional, non-inflecting lexical rules add am-

biguity for both verbs in (11). The two at-lex-rules are
added by the case library (Drellishak, 2009) for lan-

guages with case-marking adpositions. These rules ap-

ply to both nouns in (11) and because they apply option-

ally, each of these lexical rules and each of the words

they apply to double the number of trees in the forest.
28

In addition to these sources of ambiguity, there is an

under-constrained noun coordination rule that applies

optionally to each noun and can apply either before or

aer the bare-np rule, tripling the number of parse trees

for each noun it can apply to. Because neither noun

has an adjacent noun to aach to, these parses should

not succeed, but they do as the result of a bug in the

Grammar Matrix customization system.

All together the spurious case, coordination and ar-

gument optionality rules increase the number of possi-

ble trees by a factor of 144. Seing those aside, the num-

ber of possible trees looks muchmore reasonable. Addi-

tional ambiguity is added by two homophonous lexical

rules for the kai- prefix: one adds first person agree-

ment to the subject and the other (which produces the

correct tree) does not add any features.
29

The three choices at the top of the decision tree dis-

criminate between trees in which natus is the object of
i=tut-ki or kai=ler and indirectly, prevent kai=ler from
being analyzed as a noun, coordinated with natus.

The decision tree for broad-cov to produce the

parse shown in Figure 15 is shown in Figure 18. The lex-

ical rules in the last four nodes in the tree in Figure 17

are not in the broad-cov grammar and therefore do not

apply. Because ambiguity is a maer of combinatorics,

the spurious lexical rules in basil’s grammar inflate the

ambiguity significantly. The same could be said for the

sources of ambiguity in the broad-cov grammars for

the other languages, where basil had less ambiguity.

Many of the sources of ambiguity in the South Efate

grammars trace back to bugs in the Grammar Matrix

customization system, rather than basil’s inference.

Furthermore, the high ambiguity for South Efate gram-

mars was an outlier among the ambiguity in basil’s

grammars for the evaluation languages. This suggests

that these sources of ambiguity, both fromMatrix bugs

and otherwise, are not particularly pervasive.

28
The optionality of a non-inflecting lexical rule was a bug in the

Grammar Matrix, and has since been addressed by (Conrad, 2021).

29
The morpheme is glossed by the linguist as es1. Thieberger

(2006b) defines the es abbreviation as “echo subject”, and we assume

that the 1 is a particular echo subject marker, but does not indicate

first person, as there is no first person noun in the translation.
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9 Conclusion

In this paper, we introduced basil—Building Analyses

from Syntactic Inference in Local languages— a system

for the automatic inference and generation of machine-

readable grammars from IGT data. Leveraging the rich

annotation in interlinear glossed text and syntactic in-

formation projected from parses of the English trans-

lation onto sentences in a local language, basil infers

grammar specifications. These, in turn, can be input

into the Grammar Matrix customization system to pro-

duce HPSG grammars.

basil utilizes an end-to-end pipeline that begins

with an IGT corpus of a language and produces an

HPSG grammar which can be loaded into parsing so-

ware to produce syntactic and semantic representa-

tions for strings in that language. Drawing on the lin-

guistic information encoded in IGT text and general-

izations about language from the typological literature,

we designed algorithms that infer lexical and syntactic

properties about a language and define these proper-

ties in a grammar specification. This grammar spec-

ification can be input into a grammar customization

toolkit (the Grammar Matrix; Bender et al., 2002, 2010;

Zamaraeva et al., forthcoming) to produce a machine-

readable HPSG grammar for that language.

We built on previous work in grammar inference

that produced both morphological (Wax, 2014; Zama-

raeva, 2016; Zamaraeva et al., 2017) and syntactic (Ben-

der et al., 2013, 2014; Howell et al., 2017; Zamaraeva

et al., 2019a), specifications for a language. That work

focused on lexical and morphotactic specifications for

nouns and verbs, word order, case system and case

frame for verbs. We integrated the existing modules

into a single system which we scaled by adding infer-

ence for determiners, auxiliaries, case-marking adpo-

sitions, PNG and TAM features, argument optionality,

negation and coordination.

The result is an inference system that identifies the

overarching typological paerns for each of these phe-

nomena and encodes that information in a grammar

specification, which is then used to produce a grammar.

As one of the goals of this work is to automatically in-

fer grammars for a broad range of local and endangered

languages, we developed inference algorithms using a

data-driven process, testing our system on a genealogi-

cally and geographically diverse set of languages. Dur-

ing development, we consulted 27 languages from 19

language families, spread over 6 continents. We did

end-to-end system testing on 9 of those 27 development

languages.

In order to test the cross-linguistic generalizability

of our inference system, we evaluated it using 5 lan-

guages from 4 language families that were not con-

sidered during development and did not come from

any of the language families that we used in previ-

ous end-to-end testing. These languages were Arapaho,

Hixkaryana, South Efate, Titan and Wakhi. We com-

pared the performance of basil’s inferred grammars

with three baselines. The typ baseline used the cross-

linguisticallymost common specifications for each phe-

nomenon (based on typological surveys), while rand

used random specifications. The low coverage of these

baselines demonstrated that in order to produce a use-

ful grammar, it is not suicient to guess the right spec-

ifications for just some phenomena, but the specifica-

tions for a variety of interacting phenomena must be

correct. The third baseline, broad-cov, was designed to

parse as many sentences as possible in a language, and

in spite of this, basil’s overall coverage was comparable

to broad-cov, while its grammars had less ambiguity

for four of the five languages.

In addition to basil’s parse coverage being higher

than the typ and rand baselines and comparable with

broad-cov, the semantic representations produced by

basil’s grammars were richer. In evaluation, we as-

sessed not only the number of sentences that parsed,

but the correctness of those parses in terms of the

meaningfulness of their predications and the correct-

ness of the argument relations for those predications.

In this respect, basil and broad-cov performed compa-

rably, outperforming the other two baselines by a large

margin. However, basil’s grammars also added seman-

tic features for person, number, gender, tense, aspect

and mood on the semantic predicates, resulting in even

more detailed representations than those produced by

the broad-cov grammars.

Because basil relies on the GrammarMatrix’s typo-

logically robust syntactic analyses to produce the gram-

mars, basil can in principle be extended to account for

phenomena as they are added to the Grammar Ma-

trix. Recent work has added libraries for clausal com-

plements (Zamaraeva et al., 2019b), adverbial clausal

modifiers (Howell and Zamaraeva, 2018), nominalized

clauses (Howell et al., 2018), adnominal possession

(Nielsen, 2018; Nielsen and Bender, 2018) and con-

stituent questions (Zamaraeva, 2021). Leveraging the

analyses for these phenomena as well as others previ-

ously implemented in the Grammar Matrix, modules

can be added to extend basil’s scope.

Accounting for the characteristics of languages or

datasets that have the most impact on system perfor-

mance would enable beer assessment of the system’s

weaknesses and ways to improve it. For this reason, we

propose future work that systematically tests these fac-

tors by testing with dierent subsets of a single dataset

with dierent sizes, genres, completeness of glossing

or presence of part of speech tags. Upon identifying a

threshold for these factors above which system perfor-

mance stabilizes, it would then be possible to do more

rigorous cross-linguistic testing to find language fami-
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lies or typological properties that basil struggles with.

Acknowledging that basil’s grammars are currently

limited to a certain number of phenomena and are sub-

ject to some degree of error, we turn to a brief dis-

cussion of possible uses for these grammars both now

and aer additional inference modules are added. The

first of these is in accelerating the process of creat-

ing machine-readable grammars, as creating grammar

specifications, especially for languages with complex

morphology, can be quite tedious.

Machine readable grammars that are somewhat

larger than those produced by basil have been used for

a broad range of applications such as data exploration

(Letcher and Baldwin, 2013; Bouma et al., 2015), gram-

mar checkers (da Costa et al., 2016) and automatic tu-

tors (Hellan et al., 2013). Accelerating the process of

developing this type of grammar increases the num-

ber of grammars that can be used for these applica-

tions. At the current stage, inferred grammars could

still be useful for data exploration as they can be used

to search corpora for the phenomena they model. This

type of data exploration could assist linguists in find-

ing relevant examples of specific phenomena they wish

to analyze (as in Zamaraeva et al. 2017), or it could

be used to help teachers find varied examples to use

in lessons. Once a suicient number of phenomena

are handled by grammar inference, machine-readable

grammars inferred from descriptive grammars could

accompany those descriptive resources as a tool for fur-

ther investigating the language’s syntax, as described

by Bender et al. (2012) and Bouma et al. (2015). Our

inferred grammars for Wambaya, which were based on

IGT extracted from Nordlinger 1998, serve as proof of

concept for this possibility. Finally, as inferred gram-

mars help to streamline the process of grammar engi-

neering, ultimately grammars that started with basil

and were extended by hand could be used to produce

grammar checkers along the lines of da Costa et al. 2016

and other educational tools in order to assist in the ef-

fort of language revitalization.

Finally, there is potential for a symbiotic relation-

ship between basil and typological resources such as

WALS (Dryer and Haspelmath, 2013), SAILS (Muysken

et al., 2016) and others. In particular, previous work has

found that a number of the Grammar Matrix’s spec-

ifications map directly to WALS features (de Almeida

et al., 2019). For languages where these features are en-

coded in WALS, this information can potentially be in-

corporated into the grammar inference pipeline to im-

prove the accuracy of inference for some phenomena.

On the other hand, for languages whose features have

not been added to databases like WALS, basil could be

used to automatically infer those features, if an IGT cor-

pus (or a descriptive grammar from which IGT can be

extracted) is available.

The primary contribution of this work is a gram-

mar inference system that takes an IGT corpus as input

and produces a machine-readable, HPSG grammar that

can be used for parsing and generation. Although pre-

vious work has automatically generated grammars for

English and other languages frequently studied in NLP

contexts, basil focuses on producing language tech-

nology in the form of syntactically precise grammars

for local and endangered languages. In light of this,

we tested the system on a large number of genealog-

ically and geographically diverse languages and veri-

fied its cross-linguistic generalizability. Although the

grammars produced by basil are still relatively low-

coverage over corpora containing the complexity and

variety inherent to human language, they provide a

valuable starting point for producing broader coverage

grammars which can be used to assist data exploration

and language documentation and revitalization.
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A Data Repositories

Alaskan Native Languages Archive (ANLA)

https://www.uaf.edu/anla/

Archive of Indigenous Languages in Latin America

(AILLA)

http://www.ailla.utexas.org/site/

welcome.html

Endangered Languages Archive (ELAR)

http://elar.soas.ac.uk/

Kaipuleohone

https://scholarspace.manoa.hawaii.edu/

handle/10125/4250

Kratylos

https://www.kratylos.org/~kratylos/

home.cgi

Multi-CAST

https://multicast.aspra.uni-bamberg.de/

ODIN

http://depts.washington.edu/uwcl/odin/

Pacific and Regional Archive for Digital Sources (PAR-

ADISEC)

http://www.paradisec.org.au/

B Code and Project Repositories

ACE

http://sweaglesw.org/linguistics/ace/

AGGREGATION, basil

https://git.ling.washington.edu/agg

DELPH-IN

www.delph-in.net

INTENT

https://github.com/rgeorgi/INTENT2

FFTB

http://moin.delph-in.net/FftbTop

Grammar Matrix

http://matrix.ling.washington.edu/

index.html

MOM

https://git.ling.washington.edu/agg/mom

Xigt

https://github.com/xigt/xigt
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C Languages, Corpora and Descriptive Resources

The languages and corpora used for this research are listed in the table below, together with any descriptive resources

we consulted during basil’s development and evaluation.

Descriptive

Language iso Corpus Resource

Development

1 Abui abz Kratochvíl 2019 Kratochvíl 2007

2 Chintang ctn Bickel et al. 2013b Schikowski 2013

3 Matsigenka mcb Michael et al. 2013 Michael 2008

4 Nuuchahnulth nuk Inman 2019b Inman 2019a

5 Wambaya wmb Nordlinger 1998 Nordlinger 1998

6 Haiki yaq Harley 2019 Sanchez et al. 2015

Dedrick and Casad 1999

7 Lezgi lez Donet 2014b Donet 2014a

8 Meithei mni Chelliah 2019 Chelliah 2011

9 Tsova-Tush bbl Hauk 2016–2019 Hauk and Harris forthcoming

Hauk 2020

Consulted

10 Bardi bcj Bowern 2012 Bowern 2012

11 Ik ikx Schrock 2014 Schrock 2014

12 Old Javanese jav Acri 2018

13 Yup’ik esu Miyaoka 2012 Miyaoka 2012

14 Basque eus Xia et al. 2016 de Urbina 1989

15 Dutch nld Xia et al. 2016 Booij 2002

16 Finnish fin Xia et al. 2016 Sulkala and Karjalainen 1992

17 Greek ell Xia et al. 2016 Holton et al. 2012

18 Hausa hau Xia et al. 2016 Newman 2000

19 Hungarian hun Xia et al. 2016 Kenesei et al. 2002

20 Indonesian ind Xia et al. 2016 Sneddon et al. 2012

21 Italian ita Xia et al. 2016 Monachesi 1996

22 Japanese jpn Siegel et al. 2016 Siegel et al. 2016

Xia et al. 2016 Hinds 1986

23 Korean kor Xia et al. 2016 Sohn 1994

24 Mandarin cmn Xia et al. 2016 Li and Thompson 1989

25 Polish pol Xia et al. 2016

26 Russian rus Xia et al. 2016

27 Turkish tur Xia et al. 2016 Kornfilt 1997

Held Out

28 Arapaho arp Cowell 2018 Cowell and Moss Sr 2011

29 Hixkaryana hix Meira 2020

30 South Efate erk Thieberger 2006a Thieberger 2006b

31 Titan v Bowern 2019 Bowern 2011

32 Wakhi wbl Kaufman et al. 2020
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Abstract There is a growing awareness that many NLP systems incorporate biases of various types (e.g., regarding gender or race)
which can cause significant social harm. At the same time, the techniques often used for the statistical analysis of biases in NLP
systems are still relatively basic. Typically, studies test for the presence of a significant difference between two levels of a single bias
variable (e.g., gender: male vs. female) without attention to potential confounders, and do not quantify the importance of the bias
variable. This article proposes to analyze bias in the output of NLP systems using multivariate regression models. Such models provide
a robust and more informative alternative which (a) generalizes to multiple bias variables, (b) can take covariates into account, (c) can
be combined with measures of effect size to quantify the size of bias. Jointly, these effects contribute to a statistically more robust
identification and attribution of bias that can be used to diagnose system behavior and extract informative examples. We demonstrate
the benefits of our method by analyzing a range of current NLP models on two tasks, namely one regression task (emotion intensity
prediction) and one classification task (coreference resolution).

1 Introduction

Machine learning has been a major driver of innovation
in natural language processing since the 1990s, but only
the last decade has seen the widespread deployment of
NLP methods for use by non-experts: Applications such
as neural machine translation (Wu et al., 2016) or voice
assistants (Këpuska and Bohouta, 2018) are now rou-
tinely available through end users’ mobile phones, and
NLP methods are increasingly used in domains outside
computer science such as police work (Sun et al., 2021)
and recruiting (Singh et al., 2010).

Such systems are, from a user perspective, black
boxes whose predictions are generally taken at face
value. This makes the question pertinent to what ex-
tent the machine learning methods underlying these
NLP models are fair, or, on the contrary, to what ex-
tent they are subject to biases which impact their pre-
dictions. More formally, Friedman and Nissenbaum
(1996) defined biased computer systems as systems that
“systematically and unfairly discriminate against certain
individuals or groups of individuals in favor of others”;
(see Mehrabi et al. (2021) for a very similar definition).
Clearly, such biases have the potential to cause concrete
harm for the disadvantaged groups or individuals (Ben-
der and Friedman, 2018; Blodgett et al., 2020) and must

be observed and controlled as far as possible.

A practical aspect of bias analysis, which the above
definition leaves open, is whether discrimination is mea-
sured “in vitro” (at the level of system performance) or
“in vivo” (at the level of real world consequences). In line
with the majority of NLP studies on bias, the present
study focusses on bias measured “in vitro”, i.e., in the
form of systematic differences in system performance
across groups. We acknowledge the need to better un-
derstand how such “in vitro” bias translates into “in
vivo” real-world consequences, and argue below that
the methods we propose offer a first step in this direc-
tion.

A quickly growing body of studies has indeed found
that biases are, unfortunately, pervasive in NLP systems
(Mehrabi et al., 2021). One of the first studies on bias,
Bolukbasi et al. (2016) analyzed similarity relations in
word embeddings and found a substantial gender bias, as
a result of which, e.g., woman was more similar to nurse
than doctor, while man was more similar to doctor than
nurse. Davidson et al. (2019) found systematic and sub-
stantial racial biases in five Twitter datasets annotated
for offensive language detection, where African Ameri-
can English tweets were overclassified as hateful com-
pared with Standard American English, and Díaz et al.
(2018) found a significant age bias in many sentiment
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analysis algorithms, attributing less positive attitudes to
older participants. See Section 2 for more details.

Consequently, dealing with biases is rapidly becom-
ing amajor high-level consideration in the design and de-
velopment of NLP systems. The three main bias-related
tasks are (a) bias identification (is bias present?), (b) bias
attribution (where does the bias come from?) and (c) bias
mitigation (how to minimize the bias?). In this article,
we focus on the first two tasks, bias identification and
attribution.

Following the definition given above, the identifi-
cation of “in vitro” bias involves the establishment of
systematic differences in system performance between
two parallel stimuli sets for different levels of a bias vari-
able such as gender or race. Put simply, the question is:
Does, e.g., the gender of an author have a systematic
influence on the output of an NLP system (e.g., are texts
written by women predicted to be less positive?), or on
the quality of the NLP system? (E.g., are text written by
women analyzed less reliably?)

This question can be answered using statistical anal-
ysis techniques of increasing complexity, shown in Table
1. To our knowledge, all existing studies on bias fall into
either the first or the second group. Studies in the first
group only quantify the performance differences. For in-
stance, studies investigating gender bias have generated
predictions for sentence pairs which differ only in gen-
dered expressions (e.g., cf. Table 2) and reported the dif-
ference between these sets (Zhao et al., 2018; Stanovsky
et al., 2019). Without considering between-system and
between-item variance, it is not clear that such differ-
ences are indeed systematic, as required by the defini-
tion of bias from above. For this reason, studies from
the second group additionally carry out hypothesis tests,
typically t-tests, to assess the statistical significance of
the differences (Kiritchenko and Mohammad, 2018).

Although this procedure is conceptually simple and
straightforward, it is problematic for two reasons. First,
the pairwise hypothesis tests that are being employed in
existing work assume that differences between the two
sets of stimuli are due to the selected bias variable. They
cannot ensure that the putative effect of bias is not due
to a covariate that acts as a confounding variable (Mc-
Namee, 2005). For instance, studies on gender bias often
use sets of male and female names as part of their stim-
ulus sets (cf. Table 2). Across genders, these names may
differ in the average age of the bearer, or simply in their
frequency in texts, both of which may influence the per-
formance of NLP systems (Díaz et al., 2018; Gerz et al.,
2018). Similarly, author gender may be correlated with
topic (Schmid, 2002; Schwemmer and Jungkunz, 2019),
which can also have an impact on analyses. Therefore,
even when an analysis of performance differences by
gender may yield a significant performance difference,
it is advisable to rule out that there are competing ex-

planations of the difference in performance in terms of
other factors.

Second, bias studies in NLP currently generally test
for statistical significance, but very few considermodel fit
and effect sizes (with the notable exception of (Caliskan
et al., 2017)). Significance ensures that an identified ef-
fect is not a random fluke, but does not quantify how
much of the variance in the predictions is due to the
bias. Given a sufficiently large dataset, even very small
differences that are not practically relevant can reach
significance. In contrast, the computation of effect sizes
permits users to understand the practical impact of bi-
ases (Sullivan and Feinn, 2012), and is therefore arguably
a first step moving from bias “in vitro” towards bias “in
vivo”.

In this article, we propose that these two limitations
can be alleviated by adopting multivariate regression
models such as linear and logistic regression for bias iden-
tification. This solution has already become standard in
neighboring disciplines like linguistics and psychology.
In regression models, bias variables and their covariates
form the independent variables, and the predictions of
NLP systems for corresponding instances constitute the
dependent variable of the equation. As the last column
in Table 1 presents, multivariate regression models have
many advantages over the other two approaches for bias
analysis: (a), they generalize to multiple bias variables;
(b), they offer a principled treatment of covariates; (c),
they come with measures of effect size that quantify the
size of the bias, and (d), they provide a rich diagnosis
of system behavior and can be mined easily to extract
informative datapoints. In NLP, regression models of
various kinds have been used widely as predictive mod-
els. In our paper, we focus on their use as explanatory
models, where the focus is on building an interpretable
model. Models of this type have been applied to analyze
the influence of task and data properties on the perfor-
mance of sequence labeling models (Papay et al., 2020)
or the influence of various textual properties of author
responses on the peer review process (Gao et al., 2019).
We would like to stress that the goal of this procedure
is not to “explain away” biases, but rather to propose a
more stringent procedure to identify them, in order to
strengthen their empirical standing.

Our concrete contributions are as follows:

• We identify limitations of the statistical methods
that are currently applied for bias identification
(Section 1).

• We propose a workflow and a set of best practices
for designing, computing and interpreting multi-
variate regression models for this task (Section 3).

• We apply our workflow to two tasks: emotion
intensity prediction, a regression task (Section 4)
and coreference resolution, a classification task
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Performance Difference Performance Difference
plus Hypothesis Testing

Regression Modeling
with Effect Sizes

(Rudinger et al. 2018, Zhao
et al. 2018, etc.)

(Caliskan et al. 2017,
Kiritchenko et al. 2018, etc. )

(Ours)

Assessing statistical significance - + +
Quantifying the impact of multiple variables - - +
Diagnosing system behavior + + +

Table 1: Comparison of different approaches to statistical analysis of bias.

(Section 5). Our results are in line with established
findings, but permit a more nuanced and richer
understanding of system behavior.

The complete code for our experiments is pub-
licly available at https://github.com/multireg/
multireg-effect.

2 Related Work

This section sketches the state of the art in bias analysis,
More comprehensive reviews are provided by Sun et al.
(2019), Blodgett et al. (2020) and Mehrabi et al. (2021).

Bias in embeddings. At the representation level,
almost all state-of-the-art NLP systems use corpus-
derived embeddings. These embeddings were the start-
ing point for a lot of work on bias in NLP. Bias in em-
beddings is generally shown by comparing embeddings
for two sets of previously established, e.g., gendered
(male and female) words (e.g. man, woman). Boluk-
basi et al. (2016) define the gender bias of a word by its
projection on the difference vector between male and
female embeddings; this method was found by Gonen
and Goldberg (2019) to be an imperfect metric of bias.
As an alternative, the WEAT benchmark (Caliskan et al.,
2017) defines bias in terms of similarity to the two sets
of gendered words and uses a statistical hypothesis test
to assess the statistical significance of the difference.
Later, WEAT was used for measuring other bias types
(e.g. Race) as well. Caliskan et al. (2017) in fact use effect
sizes as a metric, but this was not taken up by follow-up
work in NLP such as Gonen and Goldberg (2019).

Going beyond gender, Garg et al. (2018) analyzed eth-
nic biases in historical embeddings covering 100 years
of language use. Swinger et al. (2019) showed that word
embeddings of names reflect broad societal biases that
are associated with those names, including race, gen-
der, and age biases. Comparable biases also have been
demonstrated in multilingual embeddings (Lauscher
and Glavaš, 2019; Zhao et al., 2020). The perspective
on types and sources of bias is continuing to broaden;
Hovy and Prabhumoye (2021) propose a taxonomy of
five sources of bias in NLP systems, namely the data,

the annotation process, the input representations, the
models, and the research design.

Bias in NLP systems. At the system level, bias has
been investigated in applications including named en-
tity recognition (NER), Machine Translation (MT), Senti-
ment Analysis, and Coreference Resolution. Kiritchenko
and Mohammad (2018) examined 219 sentiment analy-
sis systems and found that a majority exhibits gender
and race biases. Mehrabi et al. (2019) reported that NER
models recognize male names with higher recall com-
pared to female names. Rudinger et al. (2018) and Zhao
et al. (2018) showed that coreference resolution systems
perform unequally across gender groups by associating
occupations (such as doctor and engineer) more with
men and others (like nurse) more with women. Similarly,
Stanovsky et al. (2019) found that both commercial and
academic MT models are at risk of generating transla-
tions based on gender stereotypes rather than the actual
source content.

Bias in systems is usually measured by using bench-
marks datasets for specific tasks with a one-factor de-
sign which are created to be as balanced as possible
while varying the levels of the bias variable. Examples
include WinoBias (Zhao et al., 2018) and WinoGender
(Rudinger et al., 2018), two benchmarks for gender bias
in coreference resolutionwhich contrast “pro-stereotype”
cases (the correct antecedent of a pronoun is convention-
ally associated with the pronoun’s gender) and “anti-
stereotype” cases (opposite situation); GAP (Webster
et al., 2018), a dataset for the same task described in
detail in Section 5; and the Equity Evaluation Corpus
(EEC, Kiritchenko and Mohammad (2018)), developed to
analyze gender and race bias in sentiment analysis and
described in detail in Section 4. Bias is then quantified
by measuring the differences in performance between
these levels. Sometimes, but not always, the differences
are subsequently tested for statistical significance, e.g.
t-tests. To our knowledge, almost no studies on system-
level bias have considered covariates, nor computed ef-
fect sizes, whichmakes them vulnerable to the criticisms
outlined in Section 1.

An exception is a recent study Feder et al. (2021)
which, like ours, disentangles bias from confounding
factors. However, instead of performing correlational
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analysis of model predictions, they aim at full-fledged
causal analysis. Since causal relations can often not be
recovered from data (Pearl, 2009), they assume that a
causal graphmodeling dependencies between predictors
are given by a domain expert and show how to fine-
tune contextualized embedding models with adversarial
training to minimize bias. Thus, the two studies take
complementary approaches: Feder et al. (2021) applies
to model construction, while our study carries out black-
box analysis of existing models.

BiasMitigation. There are twomain families of meth-
ods to mitigate bias at the representation level. Ap-
proaches from the first family create a modified version
of the original data set that is biased in the opposite di-
rection, training models on the union (Park et al., 2018;
Zhao et al., 2019; Stanovsky et al., 2019). Approaches
from the second family mitigate bias by transforming
learned embeddings according to some balancing objec-
tive (Lauscher and Glavaš, 2019; Kaneko and Bollegala,
2019; Dev et al., 2020; Kaneko and Bollegala, 2021a,b).

At the system level, Zhao et al. (2017) proposed to
constrain model predictions to follow a distribution from
a training corpus. Rather than constraining the output,
some of the previous work such as Elazar and Goldberg
(2018); Zhang et al. (2018) and Kumar et al. (2019) used
adversarial learning to remove unintended bias from the
latent space during model training. Adjusting the loss
function is another popular system level approach for
bias mitigation. For instance, Qian et al. (2019) intro-
duces a new term to the loss function to equalize the
probabilities ofmale and femalewords in the output, and
Jin et al. (2021) introduce a regularization term which
reduces the importance placed on surface patterns.

Note that almost all mitigation methods require
knowledge about which variables are (potentially) in-
troducing bias, underlining the importance of reliable
identification of bias variables.

3 Bias IdentificationWith Regres-
sion Models: A Workflow

Following the discussion in the previous sections, the
task of (“in vitro”) bias identification is to establish that
a bias variable – in contrast to other covariates which
act as confounders – is primarily responsible for sys-
tematic variance in an observed variable, namely the
performance of some computer system.

This is, of course, a very general task that arises
in many empirical fields. A prominent family of tech-
niques to address this task is matching (Rubin, 1973),
which aims at generating two datasets that differ in the
bias variable, but are as close as possible in their distribu-
tion over the covariates, so that any difference between

the two datasets can be attributed to the bias variable.
Matching is widely used in social sciences, economy, and
medicine and many specific methods exist; see Stuart
(2010) for an overview.1

Importantly, matching takes place a priori, before the
experiment is carried out. This poses two challenges for
applications in natural language processing: (a), dataset
creation is dependent on the selection of covariates, so
that it is not possible to assess the impact of new covari-
ates on existing datasets without loss of comparability;
(b), matching samples from the set of all datapoints,
creating controlled rather than natural datasets, which
may conflict with the desideratum of estimating model
performance in broad-coverage scenarios.

The alternative is to carry out a post-hoc analysis
that assesses the effects of the various covariates. The
intuition is to start from a simple pairwise comparison
of two levels of a bias variable (cf. the first and second
column in Table 1) and add covariates to see whether the
effect of the bias variable remains unaffected. This pro-
cedure has become standard in the last decade in neigh-
boring fields like linguistics and psychology which have
moved from significance tests (Student’s t-test, analy-
sis of variance) to the family of multivariate regression
models (Bresnan et al., 2007; Baayen, 2008; Jaeger, 2008;
Snijders and Bosker, 2012). Regression models estimate
the relationships between the dependent (previously
called observed) variable – in this case, system perfor-
mance – and one or more independent variables – in this
case, the putative bias variable and its covariates, each
of which is assigned a direction and a significance. Since
dataset creation is dependent from covariate analysis,
regression models can be used to test new candidates
for confounders on existing datasets.

At this point, it can be whether the fundamentally
linear regression models are the right tool for the job,
in particular given the broad success of non-linear deep
learning models in NLP over the last years. We believe
that it makes sense to distinguish carefully between the
task of output prediction (given language input, predict
language output) on which non-linear models indeed
excel and the task of performance prediction (given [meta
data for an] input and a model, predict how well the
model does on the input). The latter is a considerably
simpler problem which permits the use of linear models,
as evidenced by a number of successful studies taking
this approach (Beinborn et al., 2014; Papay et al., 2020;
Caucheteux and King, 2022).

This section provides a practical workflow to set up
a regression model for bias analysis, shown in Figure
1. Our starting point is the presence of a dataset with
system predictions. Step 1 is the selection of an ap-
propriate regression model. In Step 2, we choose a set

1Note that the term bias is used differently in the matching litera-
ture, namely as the effect of confounders on the observed variable.
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Starting Point
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Step 4:
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Fit and E!ect Sizes
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Step 1:
Linear/Logistic
Mode Choice

System

Step 3:
Model Validation

Step 2:
Predictor Selection

Other
Covariates

Figure 1: Workflow for regression-based bias analysis

of predictors with the potential to systematically influ-
ence the predictions of the systems, (i.e., the putative
bias variable and plausible confounders) and carry out
a regression analysis. Next, Step 3, model validation,
ensures that the regression model is well specified and
interpretable. Finally, Step 4 utilizes effect size analysis
methods to explore how much of the system predictions
can be attributed to the influence of the predictors.

Running example. We will illustrate the steps of the
workflow on an actual (non-NLP) example, namely the
effect of smoking on mortality, a topic of long-running
interest in public health that has been analyzed exten-
sively with regression models. The most basic finding is
that smoking, overall, causes a strong increase in mor-
tality (Doll et al., 2004). Why it is still reasonable to
carry out a regression analysis in this case is that other
lifestyle choices (alcohol consumption, diet, etc.) also
presumably influence mortality, but exhibit correlations
(Padrão et al., 2007). These are sometimes surprising –
e.g., Tjønneland et al. (1999) found a correlation between
wine and healthy diet. At the same time, approaches like
matching are not applicable since the lifestyle properties
of the participants cannot be influenced retroactively.

3.1 Step 1: Choice of Regression Model
The most common two forms of regression analysis are
linear regression and logistic regression. When used
to analyze the output of computational models, linear
regression is appropriate to analyze the output of re-
gression tasks, and logistic regression for the output of
classification tasks.

Linear regression predicts the outcome of a con-
tinuous random variable 𝑦 as a linear combination of
weighted predictors 𝑥𝑖 :

𝑦 ∼ 𝛼1𝑥1 + · · · + 𝛼𝑛𝑥𝑛 (1)

where the coefficients 𝛼𝑖 can be interpreted as the
change in𝑦 resulting from a change in predictor 𝑥𝑖 , keep-
ing the other predictors constant.2

In contrast to linear regression, logistic regression
does not model the outcome of the binary random
variable 𝑦 directly. Instead, it models the probability
𝑃 (𝑦 = 1), assuming that 𝑃 (𝑦 = 1) stands in a linear
relationship to the logistically transformed linear com-
bination of weighted predictors:

𝑃 (𝑦 = 1) ∼ 𝜎 (𝛼1𝑥1 + · · · + 𝛼𝑛𝑥𝑛) (2)

where 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ) is the logistic function. Here,
the coefficients 𝛼 can be interpreted as the change in
the logit for a unit change in the predictor.

Both types of regression support continuous, binary,
and categorical predictors; the latter type is generally
represented as a set of binary indicator predictors. As
indicated above, these models assume that the predic-
tors have an additive effect on the dependent variable
(in the linear case) or its logit (in the logarithmic case).

Running example. In our mortality example, the out-
come of the regressionmodel is (some variant of) a death
rate. Depending on the exact choice of measure, it might
be appropriate to choose a linear regressionmodel, when
the death rates are approximately normally distributed
(Gardner, 1973); or it might be appropriate to choose a
logistic regression model, when the death rates can be
interpreted as probabilities (Zhu et al., 2015b).

3.2 Step 2: Selection of Predictors
Maybe the most central step in the use of a regression
model for bias analysis is the selection of the set of
predictors for the regressionmodel – that is, the putative
bias variable and a set of plausible confounders to assess
the respective roles of these variables in explaining the
variance of the dependent variable.

2If the dependent variable is not (approximately) normally dis-
tributed, other types such as Poisson or negative binomial regression
may be more appropriate.
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This task is the responsibility of the user and typi-
cally involves domain knowledge. Typically, a user car-
rying out a bias identification analysis will have one (or
a small number) of bias variables in mind, but need to
select plausible confounders.

The five primary sources of bias variables given by
Hovy and Prabhumoye (2021) can also serve as sources
of confounders. The most straightforward of these
are data and input representations, that is, properties
of the text underlying the model, many of which are
known to impact model performance. For example, low-
frequency words and classes are modeled less reliably,
longer stretches of text are harder to analyze, and so on
(Poliak et al., 2018; Dayanik and Padó, 2020). Similarly,
differences among annotators (age, social and cultural
background, task familiarity) can impact model perfor-
mance through labeling decisions (Sap et al., 2019), and
obviously design decisions of the system, such as the
choice of neural network architecture, contribute as well
(Basta et al., 2019). Hovy and Prabhumoye’s fifth cate-
gory of research design is least relevant for our purposes,
since it is concerned with systematic gaps in the field
as such rather than analysis of individual studies.

Thus, for many problems, there will be a range of the-
oretically motivated covariates. The actual analysis will
proceed in an interlocking fashion between exploratory
data analysis based on domain knowledge – to identify
interesting candidates for covariates – and regression
modeling – to obtain statistically sound assessments of
these covariates. In practical terms, the limiting factor is
often that covariates need to be available as annotation
on the dataset under consideration. While this is often
relatively simple for the domains of input representa-
tion and systems, and doable for the domain of data,
only recently has natural language processing started
to record and analyze annotator properties (Sap et al.,
2019), and there is an inherent tension between insights
into annotation biases and annotator privacy. In some
cases, however, covariates can be obtained by automatic
or semi-automatic means. As an example, see our es-
timation of the typical age for the bearer of a specific
first name on the basis of census data in Experiment 1
below. Such approaches can ease the burden of data
collection, but the analysis should take into account the
uncertainty introduced by automatic annotation.

Running example. In our lifestyle example, the co-
variates ideally include as many lifestyle factors as pos-
sible (such as alcohol consumption, diet, exercise, oc-
cupational hazards) as well as environmental factors
(housing, climate) and personal factors such as family
history of certain diseases. In practice, again, only a
limited range of such factors is likely to be available.

3.3 Step 3: Model Validation
While regression models technically support arbitrary
covariates, strong correlations among predictors, so-
called multicollinearity, can distort the estimation of
coefficients to the point that predictors are suggested
to be significant when they are not, and vice versa (Mc-
Namee, 2005). Therefore, models should be checked for
the presence of multicollinearity. There is a wide range
of tests available, see Imdad Ullah et al. (2019) for a re-
cent overview. We use the so-called variance inflation
factor (VIF). VIF measures how much the variance of
a predictor’s coefficient is inflated due to correlations
with other predictors. The VIF is computed for each
independent variable 𝑉𝑖 as

VIFi = 1/
(
1 − R2

i
)

(3)

where R2
𝑖 is the correlation coefficient obtained when

predicting 𝛼𝑖 from all other predictors. Thus, the more
collinearity is present, the higher VIF𝑖 . VIF values of 4
or greater indicate severe multicollinearity, and values
above 2.5 call for further investigation (Salmerón et al.,
2018). In this case, a number of strategies are available,
including dropping covariates, dimensionality reduction,
and regularization methods (see Dormann et al. (2013)
for details).

Another possible component of model validation is
predictor (feature) selection based on an analysis of fea-
ture contributions. In many NLP tasks, irrelevant or
unimportant features are removed for reasons of effi-
ciency or to avoid overfitting (Li et al., 2009). In fields
like psychology, where models serve explanatory pur-
poses, predictor selection is discussed more controver-
sially (Barr et al., 2013; Bates et al., 2018). In bias analysis,
the goal is to test whether the effect of the putative bias
variable stands up to the addition of covariates – the
more covariates added to the model while retaining a
significant contribution of the bias variable, the stronger
the evidence for a specific role of the bias variable. For
this reason, we believe that regression based bias anal-
ysis should be carried out on a comprehensive set of
predictors, without feature selection (Barr et al., 2013).

Running example. In our lifestyle example, is it ar-
guably important to check for multicollinearity, since
the various covariates may be predictive of one another.
For example, cramped housing conditions and occupa-
tional hazards are strongly linked through the shared
cause of poverty (Hajat et al., 2015).

3.4 Step 4: Computing Model Fit and Ef-
fect Sizes

The coefficients 𝛼 computed by regression models (cf.
Step 1) are accompanied by indications of the confidence
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level at which they are different from zero (i.e., whether
the predictor has a significant effect). Furthermore, the
global quality of regression models can be assessed by
a number of statistics. Among them, we use goodness
of fit which describes the proportion of the variance in
the data that is explained by the independent variables
of a regression model. The goodness of fit of a linear
regression model is measured by 𝑅2:

𝑅2 =

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 (4)

where 𝑦𝑖 is the model’s prediction for data point 𝑖 and 𝑦
is the mean of the observations.

In logistic regression, there is no exact equivalent
of 𝑅2. Among several pseudo 𝑅2 measures that have
been proposed, Aldrich-Nelson pseudo-𝑅2 with Veall-
Zimmermann correction (𝑅2

VZ) most closely approxi-
mates the 𝑅2 in linear regression (Smith and Mckenna,
2013):

𝑅2
VZ =

2[LL(Null) − LL(Full)]
2[LL(Null) − LL(Full)] + 𝑁

2LL(Null) − 𝑁

2LL(Full) (5)

where LL(Full) and LL(Null) are the log-likelihood val-
ues for the model with all predictors and for the empty
model (without predictors), respectively.

Goodness of fit measures the overall ability of the
model to explain the dependent variable. Relative impor-
tance, on the other hand, refers to the contribution of
individual predictors (Achen, 1982). While assessment of
relative importance in linear models with uncorrelated
independent variables is simple (the impact of each pre-
dictor is its R2 in univariate regression), in real-world
datasets variables are generally correlated, as a result of
which their impacts are not additive (Grömping, 2006).
Lindeman-Merenda-Gold (LMG) scores (Lindeman et al.,
1980) and Dominance Analysis (Budescu, 1993) are two
popular techniques to figure out the individual contri-
butions to the 𝑅2 of the model of the predictors in linear
and logistic regression, respectively.

The LMG method adds predictors to the regression
model sequentially, and considers the resulting increase
in 𝑅2 as its contribution. Since this method depends on
the possible orders in which predictors are added, the
LMG score of a predictor 𝑥𝑘 when added to a model
with a set of predictors 𝑃 is defined as the average of
the increase in 𝑅2 when adding 𝑥𝑘 to all subsets of 𝑃
(Grömping, 2006):

seq𝑅2 (𝑀 |𝑆) = 𝑅2 (𝑀 ∪ 𝑆) − 𝑅2 (𝑆) (6)

LMG (𝑥𝑘 ) =
1
𝑛

𝑝−1∑︁
𝑗=0

∑︁
𝑆⊆𝑃

𝑛 (𝑆 )=𝑗

seq𝑅2 ({𝑥𝑘 }|𝑆)(
𝑝−1
𝑗

) (7)

where 𝑅2 (𝑆) corresponds to the goodness of fit mea-
sure of a model with regressors in set S (cf. Eq 1) and

seq𝑅2 (𝑀 |𝑆) refers to the increase in 𝑅2 when the re-
gressors from 𝑀 are added to the model based on the
regressors 𝑆 .

For logistic regression, there is again no direct coun-
terpart. We propose Dominance Analysis (Budescu,
1993) as ameasure of the relative importance of each pre-
dictor. Dominance analysis considers one predictor (𝑥𝑖 )
to completely dominate another (𝑥 𝑗 ) if 𝑥𝑖 ’s additional
contribution to every possible model which does not in-
clude these two predictors is greater than contribution
of 𝑥 𝑗 . In cases where complete dominance cannot be
established, general dominance can also be used. One
predictor generally dominates another if its average con-
ditional contribution over all model sizes is greater than
that of the other predictors (Azen and Traxel, 2009).

We propose the following interpretations for the re-
gression scores outlined above: (a) At the system level,
R2 and pseudo-R2 are indicators of the amount of vari-
ance in the system predictions that can be explained
by the predictors and measure the systematic bias of a
system. (b) At the predictor level, the significance of a
predictor indicates the presence of a specific bias, and its
effect size measures its practical impact ; (c) the sign of a
coefficient indicates the direction of a bias.

Regarding (b), an important difference between the
application of significance testing in bias analysis and
the usual use in NLP to compare competing models is
that in our case, null results are arguably informative:
they indicate the absence of a particular bias, according
to the standards of significance. Naturally, the usual
disclaimers regarding null results apply: care should be
taken to ensure that they are not the result of faults in
the experimental setup.

Running example. In our lifestyle example, the out-
come of this step is a better understanding of individual
risk factors, such as smoking, as opposed to the clus-
ter of ’smoking and associated factors’ that is obtained
from a simple smoker-vs.-non-smoker analysis. Such
an understanding is crucial to better assess the risk of
individual patients based on their individual risk profile
which might include compounding factors (high blood
pressure, alcohol consumption) or mitigating factors (ex-
ercise, healthy diet). Again, note that the goal of this
analysis is not to detract from the hazardous nature
of smoking, but to better estimate of the effects of the
relevant predictors on the outcome, namely mortality.

4 Experiment 1: Emotion Inten-
sity Prediction

We now employ regression models to reanalyze model
predictions on two experiments on standard datasets
from the bias literature using the workflow defined in
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Template

1. [PER] feels [EMO].
2. The situation makes [person] feel [EMO].
3. I made [person] feel [EMO].
4. [PER] made me feel [EMO].
5. [PER] found herself in a [EMO] situation.
6. [PER] told us about the recent [EMO] events.
7. The conversation with [person] was [EMO].
8. I saw [person] in the market.
9. I talked to [person] yesterday.
10. [PER] goes to school in our neighborhood.
11. [PER] has two children.

African American European American
Female Male Female Male

Ebony Alonzo Amanda Adam
Jasmine Alphonse Betsy Alan
Lakisha Darnell Courtney Andrew
Latisha Jamel Ellen Frank
Latoya Jerome Heather Harry
Nichelle Lamar Katie Jack
Shaniqua Leroy Kristin Josh
Shereen Malik Melanie Justin
Tanisha Terrence Nancy Roger
Tia Torrance Stephanie Ryan

Table 2: Sentence templates in EEC dataset (top) and
female and male first names associated with being
African American and European American (bottom).

[EMO]: an emotion adjective

Section 3.
Our first experiment is concerned with emotion in-

tensity prediction. This task aims at combining discrete
emotion classes with different levels of activation. Given
a tweet and an emotion, the task requires to determine
a score between 0 and 1 which is the intensity expressed
regarding an emotion. Emotion intensity prediction was
among the first NLP tasks to receive attention from a
bias angle, when Kiritchenko and Mohammad (2018)
found that among more than 200 emotion intensity pre-
diction systems, almost all were biased with regard to
gender or race. (In the remainder of the article, we will
use ’system’ to refer to models performing the task at
hand, and ’model’ to refer to the regression models we
use for analyzing the systems’ performance.)

4.1 Dataset and Previous Analysis

We use EEC, the same dataset used for the large-scale
bias analysis of sentiment analysis mentioned above
(Kiritchenko and Mohammad, 2018). EEC is a bias anal-
ysis benchmark created to evaluate fairness in sentiment
analysis systems. It consists of 11 sentence templates

train dev test task

EI-reg 1701 388 1002 EIP
EEC - - 2100 EIP
GAP - 2000 2000 CR

Table 3: Number of examples in the datasets used in
our emotion intensity prediction (EIP) and coreference

resolution (CR) experiments.

instantiated into 8,640 English sentences for four emo-
tions (anger, joy, fear, sadness). Instantiated templates
differ only in the name. 3 The dataset compares (a) male
vs. female first names, and (b) European American vs.
African American first names, using ten names of each
category. Table 2 shows examples of such template sen-
tences along with names that tend to belong to African
American or European American demographic groups.

Kiritchenko and Mohammad (2018) used the EEC
as a secondary test set for systems submitted to the
SemEval 2018 Task 1 (Mohammad et al., 2018). For each
system, they compared the average emotion intensities
across different demographic groups using t-tests. They
found that almost all systems consistently scored sen-
tences of one gender and race higher than another, but
bias directions were not consistent: e.g., some systems
assigned higher emotion intensities to African Ameri-
cans and lower ones to European Americans, while oth-
ers show the opposite behavior. This apparently random
behavior of the systems has no clear explanation and
arguably raises concerns about a possible role of ran-
domness in the analysis.

4.2 Systems

Since the predictions of the systems that participated
in SemEval 2018 Task 1 are not publicly available4, we
instead implement and analyze five systems ourselves.
Four systems represent the main architectures submit-
ted to the shared task (Kiritchenko and Mohammad,
2018): A SVM unigram baseline and three neural sys-
tems based on word2vec word embeddings. To extend
the model set to the current state of the art (2021), we
include a transformer-based architecture as fifth system.

Support Vector Machine (SVM) We implement the
unigram-based SVM used as baseline system in Moham-
mad et al. (2018).

3The EEC templates can also be instantiated using gendered noun
phrases, but since these are unspecific with regard to the race variable,
we focus on the version with proper nouns. This corresponds to the
race analysis of the original study.

4Personal communication with the authors of shared task.
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Convolutional Neural Network (CNN) Based on
Aono and Himeno (2018), this system predicts an in-
tensity score by first performing convolutions of differ-
ent sizes on input word embeddings, followed by max-
pooling and a shallow multi-layer perceptron (MLP).

Recurrent Neural Network (RNN) Our RNN is com-
parable to Wang and Zhou (2018). A two-layer BiLSTM
traverses the input. The final hidden states in both di-
rections from the final layer are concatenated and fed
to a fully connected layer.

Attention Network (ATTN) This system is based on
a CNN-LSTM architecture with attention similar to Wu
et al. (2018). The input is fed to a single-layer BiLSTM.
Next, an attention mechanismweights the hidden states,
which are then passed through a CNN. The outputs of
the CNN feature maps are concatenated and passed
through a pooling layer and two fully connected layers.

Transformer-Based Neural Network (BERT) This
system is based on the BERT𝐵𝐴𝑆𝐸 multilayer bidirec-
tional Transformer architecture (Devlin et al., 2019). It
adds a linear layer on top of BERT and uses the final
hidden state of the special [CLS] token as the latent
representation of the input tweet, inspired by May et al.
(2019).

We train and evaluate all the systems on the Anger
partition of the EI-reg corpus (Mohammad and Bravo-
Marquez, 2017) and EEC respectively. EI-reg was created
by querying tweets in three languages (English, Arabic,
Spanish) and for four emotions (Anger, Fear, Joy, Sad-
ness) with words that were associated with the emotion
at different intensity levels, such as angry, annoyed, irri-
tated for Anger. Table 3 shows data statistics for both
datasets.

4.3 Setup of the Regression Model
Bias Variable. In the EEC setup, the input sentences
differ only in the person names that are filled in. We use
the same two bias variables considered by the original
study, namely Race and Gender.

Covariates. Due to the minimalist nature of the tem-
plates, coupled with the fact that the only part of the
templates that is manipulated across conditions is the
names, there is a limited range of linguistic properties
that can systematically covary with bias. We consider
two that we consider promising candidates. The first
one is the (perceived) Age of a name is computed as the
mean age for each name from US Social Security data.5

5We use data from https://bit.ly/34cgjki and the method-
ology from https://bit.ly/30f8lps.

Example Properties Intensity
Gender Race Age Freq

Frank feels angry Male EA. Old 0.05 0.55
Alonzo feels angry Male AA. Old 0.24 0.48

Justin feels angry Male EA. Yng 0.27 0.46
Lamar feels angry Male AA. Yng 0.42 0.49

Jasmine feels angry Female AA. Yng 0.47 0.47
Ellen feels angry Female EA. Old 0.19 0.50

Table 4: Example sentences for the first template from
Table 2 with their properties (EA.: European American,
AA.: African American, Yng: Young). Intensity predicted

by the the RNN system.

We discretize age, using 40 as the young/old boundary,
following the assumption that ’older’ names occur in
different contexts than ’younger’ names. The second
covariate is the linguistic frequency of the name in the
training data, since low-frequency names have found to
be a source of low performance in NLP models (Dayanik
and Padó, 2020). Since no explicit frequencies are avail-
able for the Google News skipgram vectors (Mikolov
et al., 2013), we approximate frequency by vector length,
which correlates highly with frequency (Roller and Erk,
2016). This is different from the ’real world’ frequency
of the name, which arguably is less likely to reflect in
the behavior of an NLP model. Table 4 shows examples
from the EEC with their properties.6

Model Shape We analyze the intensities predicted by
our systems as in the original study, performing linear
regression analysis at the level of each template with
the following model:

Intensity ∼ Race + Gender + Age + Freq (8)

For Race, 1 means African American and 0 European
American. For Gender, 1 means male and 0 female. For
Age, 1 means young and 0 old.

Recall that on this task, there is no right or wrong
answers. Instead, the focus of interest is whether the
systems assign different intensities to a template depen-
dent on the properties of the instantiating name. If they
do not, none of the predictors will show a significant
effect; if they do, significant effects will emerge.

Model Validation. Table 5 shows the variance infla-
tion factors for the variables. Since only a single VIF
value is larger than 2.5, and only marginally so, we con-
clude that multicollinearity is not a problem.

6We also performed experiments using a non-discretized version
of age and including real-world frequency. We observed a substan-
tially similar outcome (same levels of significance, coefficient signs for
predictors, and almost the same overall 𝑅2 values).
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Race Gender Frequency Age

VIF 2.03 1.42 2.68 1.29

Table 5: VIF scores for the full set of variables.

CNN RNN ATTN BERT SVM

R
Coef. −0.010∗−0.010∗−0.002 −0.008 0.001

Abs. LMG 0.080 0.082 0.010 0.068 0.018
Per. LMG 0.42 0.47 0.06 0.48 0.03

G
Coef. 0.006 0.002 0.001 −0.001 −0.003∗∗∗

Abs. LMG 0.037 0.003 0.020 0.025 0.523
Per. LMG 0.20 0.02 0.12 0.18 0.86

A
Coef. 0.005 0.001 0.001∗−0.003 0.001

Abs. LMG 0.049 0.060 0.070 0.027 0.014
Per. LMG 0.26 0.34 0.40 0.19 0.02

F
Coef. 0.016 0.019 0.015 0.010 −0.001

Abs. LMG 0.023 0.029 0.073 0.021 0.048
Per. LMG 0.12 0.17 0.42 0.15 0.08

R2 model fit 0.19 0.17 0.17 0.14 0.60

Table 6: Regression-based bias analysis on EEC
(R = Race, G = Gender, A = Age, F= Frequency)

(Abs:Absolute, Per. Percentage)

4.4 Results
Table 6 shows the main results. (We omit intercepts
in the table). The columns correspond to systems, and
the rows describe the effects of bias variables for each
system. For each predictor, we show a coefficient, a
confidence level,7 and an LMG effect size score.

Overall results As discussed in Section 3, we treat
R2 as a measure of systematic bias in a system. Inspec-
tion of the R2 scores indicates that there is a certain
amount of systematic bias in all systems, but that the
three static-embedding neural systems do a very good
job (R2 between 0.17 and 0.19) compared to the SVM
(R2=0.60). BERT, the only neural system using contextu-
alized embeddings, does an even better job and contains
the least amount of systematic bias (R2=0.14).

Comparison among systems None of the neural
systems exhibits a significant gender bias, as the LMG
scores show. Unlike Gender, the Race variable is respon-
sible for the significant portion of the amount of variance
in the system predictions. The CNN and the RNN sys-
tems both show a significant race bias which accounts
of about 42–47% (LMG score: ∼ 0.08) of the variance in
the intensity predictions. Note that Age, even though it

7We use ∗ for 𝛼=0.05, ∗∗ for 𝛼=0.01, and ∗∗∗ for 𝛼=0.001.

misses significance, also accounts for 25–35% of the vari-
ation in intensity in the CNN and RNN. Interestingly,
the ATTN architecture shows a different picture: there
is a considerable amount of Age bias (40% of variance),
but a much smaller race bias; instead, this system shows
a frequency bias, which accounts for another 40% of the
variance. In the BERT system, none of the bias variable
achieve significance. In terms of relative contribution
of individual predictors, BERT is more similar to CNN
and RNN than to ATTN: Race is still making the largest
contribution to the overall bias of the system, with 48%.
The SVM differs strikingly: there are hardly any Race
and Age biases, but an extremely strong effect of gender
(86% of variance). Since this system does not use embed-
dings, the most likely source of this bias is the training
corpus (EI-Reg), as also pointed out by the authors of
the original study (Kiritchenko and Mohammad, 2018).

Interpretation While we can confirm the overall race
bias found by Kiritchenko and Mohammad (2018), our
picture differs substantially: (a) the direction of the bias
is consistent among systems: all neural systems pre-
dict lower intensity scores for African Americans; (b) we
do not observe a significant gender bias among neural
systems; (c) we achieve a richer understanding of the
systems’ predictions, by quantifying the role of these
factors, and by adding age and frequency into the pic-
ture.

Inspection of Examples Following up on (c), Table 4
presents three pairs of examples from the EEC dataset
with their associated intensity values, as predicted by
the RNN system. We have selected these instances to
highlight the usefulness of the regression model to iden-
tify interesting instances. They show that the effect of
Race variable (African Americans are assigned lower in-
tensities) can be nullified by age (third example) and
frequency (first and second examples). Such considera-
tions remain hidden in an analysis that simply compares
means between different groups of predictions.

5 Experiment 2: Coreference Res-
olution

Our second experiment analyzes several coreference
resolvers in order to show how the logistic regression
version of our approach can perform bias analysis on
classification models. We choose coreference resolution
as our task because of its established status in bias analy-
sis; previous work has established that bias, in particular
gender bias, is present in numerous coreference systems
(Webster et al., 2018; Rudinger et al., 2018; Zhao et al.,
2018). At the same time, coreference resolution, as a
discourse level task, is faced with more complex data
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Figure 2: Example from the GAP dataset.

than more local (i.e., sentence-level) tasks, with a cor-
respondingly larger set of potential confounders. We
re-analyze a well-known coreference resolution dataset
to verify the presence of gender bias in a manner that is
robust against possible covariates.

5.1 Dataset and Previous Analysis
We use GAP (Webster et al., 2018), a human-labeled
corpus of ambiguous pronoun-name pairs from English
Wikipedia snippets. Each instance in the corpus con-
tains two person named entities of the same gender and
an ambiguous pronoun that may refer to either, or nei-
ther. System clusters were scored against GAP examples
according to whether the cluster containing the target
pronoun also contained the correct name (True Positive)
or the incorrect name (False Positive). Figure 2 shows an
example from the GAP development set (more statistics
in Table 3).

In line with previous work (Webster et al., 2018),
we use the development set of GAP to carry out our
analyses. Below, we report overall system performance
on the complete development set, in line with previous
work. However, we exclude ≈200 instances from the
development set, for which the pronoun does not refer
to either of the two candidate named entities, from the
regression analysis, since this makes it impossible to
compute some of our covariates (cf. Section 5.3).

5.2 Systems
We experiment with six diverse coreference resolvers and
analyze their predictions with our approach. As trained
versions of all systems were publicly available, we did
not need to train any systems ourselves. All systems
except the BERT-based one were trained on the English
portion of the 2012 CoNLL Shared Task dataset (Pradhan
et al., 2012). It contains 2802 training, 343 development
documents, and 348 test documents. BERT𝑙𝑎𝑟𝑔𝑒 Joshi

et al. (2020) was pretrained on BooksCorpus (Zhu et al.,
2015a) and English Wikipedia using casedWordpieces
tokens (Schuster and Nakajima, 2012) and fine-tuned
on the 2012 CoNLL ST dataset.

Lee et al. (2013) This system is a collection of deter-
ministic coreference resolutionmodules that incorporate
lexical, syntactic, semantic, and discourse information,
incorporating global document-level information. The
system won the CoNLL 2011 shared task.

Clark and Manning (2015) This system uses a
feature-rich machine learning approach. It performs
entity clustering using the scores produced by two lo-
gistic classifier-based mention pair classifiers features.
Both mention pair classifiers use a variety of common
features such as syntactic, semantic and lexical features
for mention pair classification.

Wiseman et al. (2016) This was the first neural coref-
erence resolution system which showed that the task
could benefit from modeling global features about en-
tity clusters. It uses a neural mention ranker which is
augmented by entity-level information produced by a
RNN running over the cluster of candidate antecedents.

Lee et al. (2017) This was the first neural end-to-end
coreference resolution system that works without a syn-
tactic parser or hand engineered mention detector. It
uses a combination of Glove and character level em-
beddings learnt by a CNN to represent the words of
annotated documents. Next, the vectorized sentences of
the document are fed into a BiLSTM to encode sentences
and obtain span representations. The system also uses
an attention mechanism to identify the head words in
the span representations. Finally, the scoring functions
are implemented via two feed-forward layers.

Lee et al. (2018) This system is an extension of Lee
et al. (2017), which improves on two aspects. First, it uses
gated attention mechanism which allows refinements
in span representations; second, the system applies an-
tecedent pruning which alleviates the complexity of run-
ning on long documents. It formed the state of the art
for two years.

Joshi et al. (2020) SpanBERT is a variant of the BERT
transformer (Devlin et al., 2019) designed to better rep-
resent spans of text. It works by (1) masking contiguous
random spans, rather than random tokens, and (2) intro-
ducing a new objective function called span-boundary
objective (SBO) which forces the model to learn to pre-
dict the entire masked span from the observed tokens
at its boundary. BERT𝑙𝑎𝑟𝑔𝑒 trained with the SpanBERT
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Gender C_Freq C_Diff C_Single C_Same

VIF 1.03 1.03 1.88 1.02 1.53

Gender I_Freq I_Diff I_Single I_Same

VIF 1.03 1.04 1.58 1.04 1.24

Table 7: VIF scores for the predictors. C_: Correct, I_:
Incorrect

method improves the state of the art on many tasks
including coreference resolution.

5.3 Setup of the Regression Model

Bias Variable. As in the original study, we use Gender
as designated bias variable.

Covariates. In contrast to the first experiment, we do
not use Age and Race, since the GAP dataset contains
numerous named entities that are either not generally
known or fictional (such as "the Hulk"). Therefore, these
variables are either inapplicable or unknown to the typi-
cal annotator. Instead, use discourse-related properties
of the antecedents as covariates, since in the task of
coreference resolution the structural properties of the
discourse arguably play a role in the difficulty of the
task:

• Diff is the number of tokens between the named
entity and target pronoun, normalized by the max-
imal distance in the corpus;

• Single states whether the named entity is a single
word or an MWE;

• Same indicates whether the pronoun and named
entity are in the same sentence;

• Freq defines the log-transformed corpus frequency
of the entity, computed on the English Wikipedia
(en-wikipedia) released on 20th March 2019, nor-
malized by the maximal frequency in the corpus.
The frequencies for MWEs are calculated based
on the syntactic head of the expression.

Since the correct and the incorrect antecedent can differ
regarding these properties, each property exists twice.
We use the prefix C_for the correct and I_for the incor-
rect one. For gender, both antecedents have the same
gender by design. The bottompart of Figure 2 shows how
these covariates are initialized for the given example.

Model Shape We analyze the performance of the
coreference resolvers at the level of individual predic-

Male Female All Bias

Lee et al. (2013) 55.4 45.5 50.5 0.82
Clark & Manning (2015) 58.5 51.3 55.0 0.88
Wiseman et al. (2016) 68.4 59.9 64.2 0.88
Lee et al. (2017) 67.2 62.2 64.7 0.92
Lee et al. (2018) 75.9 72.1 74.0 0.95
Joshi et al. (2020) 89.9 87.8 88.8 0.98

Table 8: F1-Scores of resolvers on the GAP development
set (Bias=F1 Female / F1 Male)

tions using following logistic regression model:

p(Correct) ∼ 𝜎 (Gender+
C_Freq + I_Freq+
C_Diff + I_Diff +
C_Single + I_Single+
C_Same + I_Same)

(9)

where 𝜎 is the logistic function. p(Correct): is 1 if the
resolver matches the pronoun with the correct named
entity in corresponding instance and 0 otherwise. For
Gender, 1 means female and 0 male. For Single, 1 means
the entity is a single word, 0 otherwise. For Same, 1
means the entity is in the same sentence as the pronoun,
0 otherwise. We use Dominance Analysis to determine
relative importance of each predictor.

In this setup, the regression model predicts whether
each of the system predictions is correct or incorrect. To
the extent the correctness is affected by the properties of
the discourse captured by our predictors, we will obtain
significant effects; conversely, should the correctness be
fully random or dependent on properties independent
from our predictors, we will not see significant effects.

Model Validation Table 7 shows the results of mul-
ticollinearity analysis on the set of predictors. All VIF
values are smaller than 2, which indicates the absence
of problematic multicollinearity.

5.4 Results
Table 8 shows the performance of six resolvers on the
complete GAP development set (overall and separately
for Male and Female). It probably does not come as
a surprise that performance increases over time; it is
positive to note, though, that the Bias decreases corre-
spondingly.

Table 9 shows the main results of our regression anal-
ysis on the subset of the GAP development set with a
correct solution (cf. Section 5.1), organized by columns
(systems). Each row provides a regression coefficient
with its confidence level as well as the relative impor-
tance score for the predictor, using Dominance Analysis
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Lee et al. Clark and Manning Wiseman et al. Lee et al. Lee et al. Joshi et al.
(2013) (2015) (2016) (2017) (2018) (2020)

Gender
Coef −0.473∗∗∗ −0.308∗∗ −0.314∗∗ −0.271∗∗ −0.215∗ −0.084
DA 0.008 0.004 0.004 0.003 0.002 0.000

C_Freq
Coef 0.004 0.018∗∗∗ −0.004 −0.003 −0.001 0.001
DA 0.000 0.005 0.000 0.000 0.000 0.000

I_Freq
Coef −0.003 −0.003 −0.004 −0.006 −0.003 0.003
DA 0.000 0.000 0.000 0.001 0.000 0.000

C_Diff
Coef 1.291∗∗ −1.617∗∗∗ −0.933. −0.337 0.608 −0.065
DA 0.006 0.002 0.001 0.001 0.001 0.000

I_Diff
Coef −1.027∗ 1.444∗∗∗ −0.086 −0.740. −0.510 −0.053
DA 0.003 0.002 0.001 0.004 0.001 0.000

C_Single
Coef 0.344∗∗ 0.475∗∗∗ 0.775∗∗∗ 0.666∗∗∗ 0.554∗∗∗ 0.171
DA 0.004 0.008 0.021 0.016 0.010 0.001

I_Single
Coef −0.053 −0.166. −0.268∗∗ −0.346∗∗∗ −0.360∗∗∗ 0.036
DA 0.001 0.001 0.003 0.006 0.006 0.000

C_Same
Coef −0.603∗∗∗ −0.456∗∗∗ −0.561∗∗∗ −0.564∗∗∗ −0.336∗ −0.007
DA 0.015 0.002 0.007 0.008 0.004 0.000

I_Same
Coef 0.086 0.366∗∗ 0.120 0.318∗∗ 0.317∗∗ 0.028
DA 0.000 0.002 0.000 0.003 0.003 0.000

Model Fit
𝑅2

VZ 0.05 0.04 0.05 0.05 0.03 0.01
Acc 0.61 (0.58) 0.57 (0.55) 0.58 (0.53) 0.59 (0.53) 0.63 (0.63) 0.55 (0.55)

Table 9: Regression-based analysis of coreference resolution systems on GAP dataset.
DA: Dominance Analysis, Freq: Frequency, C_: Correct, I_: Incorrect instances.

(DA). 𝑅2
VZ indicates the goodness of fit values at the

level of complete systems. (Note that these numbers,
computed for logistic regression models, are not compa-
rable to the numbers for linear regression models from
Experiment 1.)

We also report accuracy values for the predictions
of our logistic regression model, averaged over 10-fold
cross-validation (𝐴𝑐𝑐). Numbers in parentheses indicate
the accuracy of corresponding majority baselines. The
differences in baseline scores across systems are due to
the fact that gold labels (i.e., the p(Correct) variable in
the equation) are dependent on system predictions.

System level analysis We first discuss results at the
system level. The last row of Table 9 (Model Fit) shows
the overall model fit for all systems. The ability of our
regression model to outperform majority baselines for
the first four systems (Lee et al., 2013; Clark and Man-
ning, 2015; Wiseman et al., 2016; Lee et al., 2017) shows
that our analysis can predict mistakes made by these
coreference resolvers by only considering a small set of
discourse-related features plus Gender. In contrast, Lee
et al. (2018) and Joshi et al. (2020) both show an 𝑅2

VZ
of almost zero, that is, the logistic regression models
perform at the level of a majority class baseline – the
remaining errors that they systems make are idiosyn-
cratic rather than systematic. These findings tie in well

with the overall system performance scores shown in
Table 8.

It is striking that Joshi et al. (2020), the best model
by a substantial margin, is also the one exhibiting the
smallest bias. We see two possible explanations: (a), the
model was trained on a large corpus from several do-
mains with different discourse style, which may make it
more robust to gender bias (Saunders and Byrne, 2020);
(b) in contrast to the older studies, this model is based
on contextualized embeddings, which also showed lower
bias in Experiment 1. Without re-training the model, we
cannot currently distinguish between these two expla-
nations.

Predictor level analysis We now move on to investi-
gate the contribution of each predictor to the systems’
predictability. At this level, gender is a statistically sig-
nificant predictor (p < 0.05) for all systems except Joshi
et al. (2020). It has a negative sign throughout, indicat-
ing worse performance for female entities. This is again
in line with the findings reported in Table 8. However,
our approach reveals other important patterns which
cannot be observed by using traditional analysis meth-
ods. First, Clark and Manning (2015) and Wiseman et al.
(2016) have the same DA coefficient for gender variable
but different 𝑅2

VZ values. We interpret this to mean that
the contribution of gender bias to the overall bias in
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these two systems is not the same, an observation that
would not have been possible through traditional bias
analysis methods (cf. Table 8).

Second, we see that the coefficient signs of the pre-
dictors C_Single and C_Same remain the same across
systems: Systems perform better for instances where the
correct antecedent is a single word, and it is not in the
same sentence with the pronoun. Moreover, dominance
analysis shows that these two predictors are among the
main contributors to the biased predictions in four sys-
tems out of six, the two exceptions being Lee et al. (2013)
and Joshi et al. (2020).

Third, the small but consistent positive relative im-
portance values of the C_Diff and I_Diff predictors for
half of the systems show that these variables help ex-
plain the systems’ predictions. In contrast, the low
relative importance values of the C_Frequency and
I_Frequency predictors indicate that these variables do
not affect coreference resolution much.

Interpretability These detailed findings indicate that,
similar to emotion intensity prediction, the analysis of
coreference resolvers can also benefit from not only the
controlled bias variable but also from other properties of
the input even in datasets which are designed carefully
to isolate the effect of the target variable. As stated
in Exp. 1, these analyses can also be used to extract
interesting examples and subsets.

We illustrate this for the two attributes C_Same
and I_Same, i.e., whether the correct and incorrect an-
tecedent are in the same sentence or not. We split the
GAP dataset into four reasonably-sized subsets based
on the values of these attributes: the subset where both
are in the same sentence (C_Same=1 and I_Same=1)
includes ∼ 900 examples and the other three subsets
include ∼ 300 examples. Table 10 shows the bias values
(defined as above) for the three best performing systems.
We observe that these systems vary widely regarding
the subset where gender bias is most prominently visible
varies across systems: Lee et al. (2017, 2018) both show
the worst bias when the incorrect antecedent is not in
the current sentence (I_Same=0), but differ in the effect
of the position of the correct antecedent (C_Same). In
contrast, Joshi et al. (2020) performs almost perfectly
when I_Same=0, but struggles most the case when both
correct and incorrect antecedent are in the current sen-
tence. These variations in model performance across
subsets raise questions about the representations of an-
tecedents in the various models which go beyond the
scope of this paper.

6 Conclusion
In this article, we have argued that bias analysis, a task of
major importance concerning the societal implications

I_Same=0 I_Same=1

Lee et al. (2017)
C_Same=0 0.80 1.10
C_Same=1 0.90 0.90

I_Same=0 I_Same=1

Lee et al. (2018)
C_Same=0 0.90 1.00
C_Same=1 0.86 0.97

I_Same=0 I_Same=1

Joshi et al. (2020)
C_Same=0 1.02 1.02
C_Same=1 0.99 0.94

Table 10: Bias values for the three best performing
systems, with data split into four groups according to
C_Same and I_Same (worst bias marked in boldface).

of NLP, can benefit from richer statistical methods to
detect, quantify and attribute bias. We have proposed
to follow other scientific fields in adopting regression
analysis which (a) generalizes to multiple bias variables,
(b) can quantify the contribution of confounder variables
to the observed bias with measures of effect size, and
(c) can be used to diagnose system behavior and extract
informative datapoints.

Clearly, regression analysis is no panacea on its own:
it presupposes a set of plausible covariates of bias, which
can come from a wide variety of sources, including task-
specific annotation, task-unspecific input representa-
tions, or model architecture (Hovy and Prabhumoye,
2021). Such covariates are typically known through do-
main expertise or uncovered by exploratory data analy-
sis. Furthermore, the values of these bias variables must
be available, or annotated, for all data points, which
can represent a bottleneck. Thus, regression analysis
complements, but does not replace, traditional methods
of bias analysis.

We have demonstrated the usefulness of our ap-
proach by analyzing a range of model architectures on
a regression task and a classification task, obtaining
model-level results that are in line with the existing
literature, e.g., BERT-based systems appear to exhibit
comparatively little bias (Basta et al., 2019). In addition,
adding predictor-level analysis offers a richer under-
standing of the importance of the bias variables and
their interactions with other textual properties. Note
that we only considered datasets specifically designed
to exhibit the effects of a single bias variable. We believe
that the benefits of our analysis framework would be
even clearer on more naturalistic datasets where pair-
wise hypothesis tests become even more problematic
(see, e.g., Gorrostieta et al. (2019)).

Another methodological debate that we hope to con-
tribute to is what constitutes a ’substantial’ bias? We
have argued that effect sizes offer a statistically sound
approach to measuring the amount of variation in the
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output that can be attributes to a set of input properties.
Our study provides a starting point for the community
to establish a magnitude for what it considers a ’sub-
stantial’ bias, similar to the often-used thresholds for
inter-annotator agreement (Cohen, 1968) or general ef-
fect sizes in psychology (Cohen, 1988).

Regarding future work, one avenue concerns richer
regression models that analyze interactions among pre-
dictors. Such interactions, when properly motivated,
can further improve our understanding of the perfor-
mance data. In fact, our last example in Exp. 2 essentially
demonstrates an interaction: the degree of gender bias
in the conference resolvers is affected by an interaction
between the position of the incorrect and the correct an-
tecedents. Ideally, such observations might serve as mo-
tivation for assessing and potentially modifying model
architectures or training regimens.

Another avenue of future research is widening our
scope from the analysis of bias in NLPmodels (that is, “in
vitro” bias according to our terminology in Section 1) to
real life “in vivo” bias in academic communities. Recent
studies have identified multiple such biases, e.g., gen-
der bias in publications (Mohammad, 2020) and hiring
(Eaton et al., 2020). We would hope that the application
of robust regression analysis, a standard method in the
social sciences, would help bolstering these studies and
contribute towards redressing such social harms.
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Abstract Legislative debate transcripts provide citizens with information about the activities of their elected representatives, but
are difficult for people to process. We propose the task of policy-focused stance detection, in which both the policy proposals under
debate and the position of the speakers towards those proposals are identified. We adapt a previously existing dataset to include
manual annotations of policy preferences, an established schema from political science. We evaluate a range of approaches to
the automatic classification of policy preferences and speech sentiment polarity, including transformer-based text representations
and a multi-task learning paradigm. We find that it is possible to identify the policies under discussion using features derived
from the speeches, and that incorporating motion-dependent debate modelling, previously used to classify speech sentiment, also
improves performance in the classification of policy preferences. The proposed use of contextual embeddings and a multi-task
learning paradigm do not perform as well as simpler approaches. We analyse the output of the best performing system, finding
that discriminating features for the task are highly domain-specific, and that speeches that address policy preferences proposed by
members of the same party can be among the most difficult to predict.

1 Introduction
Transcripts of legislative debates provide access to in-
formation concerning the policies that are publicly sup-
ported or opposed by politicians. They are of interest
to political scientists, the media, the politicians them-
selves, and citizens who wish to monitor the activities
of their representatives.

However, such documents are complex and diffi-
cult for people to process. Transcripts of debates in the
United Kingdom (UK) Parliament are so hard for ordi-
nary people to make sense of that parliamentary mon-
itoring website www.theyworkforyou.com publishes
manually annotated versions of the transcripts. These
include crowd-sourced explanations of the debated pro-
posals, as well as policy-focused aggregations of the
voting records of parliamentarians. The large quantity
and esoteric nature of the data in the parliamentary
record (known as Hansard) motivates the need for au-
tomatic analysis of its contents.

Previous work in the domain of legislative debate
transcripts has focused on either (a) sentiment polarity
classification (Bhavan et al., 2019; Burfoot et al., 2011;
Thomas et al., 2006), or (b) policy identification (Aber-
crombie and Batista-Navarro, 2018b; Abercrombie et al.,
2019) in isolation. As far as we are aware, these two
tasks have not previously been combined in this do-

main, despite the fact that: (1) the information yielded
is complementary, and perhaps even necessary, for
practical use (i.e., without analysis of debated policies,
the target of sentiment in the speeches is unknown);
and (2) these two tasks rely on features derived from
shared information, which could assist with the learn-
ing of parameters for both tasks in amulti-task learning
setting.

Borrowing the concept of policy preferences from
political science, we compare approaches to automat-
ically determining the policy preference that is under
discussion in each debate, and whether each speaker
supports or opposes it.

Our contributions Building on the work of Aber-
crombie et al. (2019); Abercrombie and Batista-Navarro
(2020), we combine policy preference identification and
speech-level sentiment polarity analysis to formulate
the task of policy-focused speech stance detection for
the domain of legislative debate speeches, in which the
position of each speaker in a debate is identified in re-
lation to the proposal under discussion. Unlike prior
work, we thus obtain interpretable analysis of the po-
sitions taken by MPs with respect to the policies pre-
sented in parliamentary debates.

To this end, we add a set of manually annotated
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policy preference labels to a large existing English lan-
guage corpus of UK parliamentary debates, creating
the first dataset to be labelled with both topics (policy
preferences) and positions (sentiment) in this domain.
Wemake the enhanced corpus available to the research
community.

We use this dataset for the evaluation of approaches
to the classification of policy-focused speaker stance.
We test classification systems comprising combinations
of single- and multi-task learning paradigms, differ-
ent debate structure models, and varying approaches
to text representation and machine learning methods.
Our results represent initial benchmarks for this task.

Research questions In this paper, we address the
following questions:

RQ1 To what extent do humans agree on the policy
preference labelling task? We compare agree-
ment between our annotations with those re-
ported in previous work in both political science
(Lacewell and Werner, 2013; Mikhaylov et al.,
2008) and natural language processing (Aber-
crombie et al., 2019). The latter found that agree-
ment was comparable for labels applied to de-
bate motions and the manifestos for which the
scheme was originally designed, a finding which
we re-examine on this new dataset. Hypothe-
sis H1: Policy preference labels are as reliable for
debate motions as party-political election mani-
festos.

RQ2 Howwell domachine learning classifiers perform
on the combined task of policy-focused stance
detection? We test a number of approaches
against a majority class baseline. These include
fine-tuning pre-trained contextual word embed-
dings, which we compare to a simple bag-of-
words model, and a multi-task learning approach
designed to take advantage of mutually benefi-
cial information, which we compare to tackling
the constituent tasks independently.
Hypothesis H2a: Classification of policy-
focused stance will benefit from use of contextual
BERT embeddings.
Hypothesis H2b: Classification of policy-
focused stance will benefit from concurrent clas-
sification of policy preferences and speaker sen-
timent using a multi-task approach.

2 Background
House of Commons debates As the superior leg-
islative chamber in the UK Parliament, the House of
Commons (HoC) draws the attention of the public, the

media, and the academic sector, and was therefore cho-
sen as the focus of this study.

Debates in the HoC consist of an opening motion
(proposal), the content of which usually does not pro-
vide clues to the policy that is proposed (see, for exam-
ple, Figure 1a). We found 75.8 per cent of debate mo-
tions in the corpus to contain insufficient information
to manually determine a policy preference.

A number of Members of Parliament (MPs) then
respond to the motion, when invited to do so by the
Speaker (the chief presiding officer of the House). An
individual MP may make multiple utterances during a
given debate. Following previous work (Abercrombie
and Batista-Navarro, 2020; Salah, 2014; Thomas et al.,
2006), we consider a speech to be the concatenation of
all their utterances in that debate. In many cases, the
motion is voted on by MPs in a division. As in previ-
ous work, we use the record of these votes as labels for
sentiment and stance polarity classification.

Figure 1: Examples from TheyWorkForYou of (a) a de-
bate motion labelled by an annotator with code 110:
European Union: Negative; and two utterances made in
response to the motion by speakers who voted (b) aye
(support) and (c) no (oppose).

Policy preferences The concept of policy pref-
erences is widely used in political science (Budge
et al., 2001) to categorize the positions of politi-
cians. The Manifesto Project (MARPOR: https://
manifestoproject.wzb.eu) have developed a set of
policy preference codes organised under seven ‘do-
mains’. The current coding scheme comprises 74 policy
preference codes, almost all of which are ‘positional’,
encoding a positive or negative position towards a pol-
icy issue (Mikhaylov et al., 2008). We use these codes as
labels for the policy preferences expressed in the debate
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motions. In the example in Figure 1a, the policy pref-
erence label applied to this debate by annotators (see
§4.1) is 110: European Union: Negative.

Sentiment and stance detection While use of ter-
minology varies and overlaps in the literature, stance
detection can be viewed as a form of sentiment classifi-
cation. From this perspective, it consists of determining
the sentiment polarity of a piece of text towards a pre-
determined ‘given target of interest’ (Mohammad et al.,
2016). In the case of parliamentary debates, for each ex-
ample speech, we seek to determine (1) the nature of its
target—the policy preference under debate—and (2) the
position or sentiment expressed towards it—support or
opposition. We consider the combined policy preference
and speech sentiment labels to represent the speaker’s
stance on a particular policy. For instance, in the ex-
ample in Figure 1, the stance of speech extracts (b) and
(c) are European Union: Negative—support and European
Union: Negative—oppose, respectively.

3 Related work
Sentiment classification is one of the themost active ar-
eas of research in natural language processing. Within
the domain of legislative debates, examples include
classification of speeches from the US Congress (Bur-
foot et al., 2011; Ji and Smith, 2017; Proksch et al., 2019;
Thomas et al., 2006), and the UK Parliament (Abercrom-
bie and Batista-Navarro, 2018b, 2020; Bhavan et al.,
2019; Salah, 2014; Sawhney et al., 2020). In these
works—and in common with ours—speaker sentiment
is assumed to be analogous to vote outcome. However,
in the task undertaken in these previous works, the na-
ture of the targets—the Bills or motions under debate—
is not identified.

The related task of stance detection—in which the
target of sentiment is (pre-)determined—has been ap-
plied to such domains as social media (e.g. Augenstein
et al., 2016a,b; Hardalov et al., 2021; Li et al., 2021;
Mohammad et al., 2016), online debate forums (e.g.
Hardalov et al., 2021; Hasan and Ng, 2013; Somasun-
daran and Wiebe, 2010; Sridhar et al., 2015), and news
articles (Ferreira and Vlachos, 2016; Schiller et al., 2021).
For a recent survey, see Küçük and Can (2020).

In most of this work the target is pre-chosen by
the user or the system. In the political domain, this
has been framed as agreement detection in which two
pieces of text are compared (Menini and Tonelli, 2016;
Menini et al., 2017), or classification of support or attack
towards pre-defined policies (Menini et al., 2018). While
Vamvas and Sennrich (2020) carry out stance detection
on the positions expressed by Swiss politicians, they do
not perform automatic identification of the policies dis-
cussed, only conducting binary in favour/against classi-

fication in a similar vein to the sentiment/position clas-
sification work discussed above.

More similarly to this work, Bar-Haim et al. (2017)
used a supervised approach to identify both the stances
of extracts from Wikipedia articles and the targets of
those stances from a closed list of ‘controversial topics’.
However, this labelling scheme does not cover the pol-
icy positions proposed in parliament.

A common framework for stance detection is
the SDQC (Support-Deny-Query-Comment) annota-
tion scheme of Zubiaga et al. (2016). While potentially
suitable for our data (support and deny are equivalent
to our support and oppose labels), application of this
framework would require manual annoation of each in-
stance in the dataset with the more fine-grained labels.
Instead, we follow the majority of work on legislative
debates (e.g. Abercrombie and Batista-Navarro, 2018a;
Thomas et al., 2006; Salah, 2014) in taking advantage
of pre-existing vote-derived binary labels at the speech
level, and thus only requiring the addition of policy
preference labels for each debate.

In most of the reviewed work, stance targets are ex-
plicitly selected by the authors of the task (e.g. Donald
Trump (Augenstein et al., 2016a,b), Richard Nixon and
John F. Kennedy (Menini et al., 2018), or atheism (Mo-
hammad et al., 2016)). Unlike these, we frame target
selection as a multiclass topic classification problem,
making use of an existing schema validated by politi-
cal scientists.

Document classification is an active area of re-
search for tasks such as identification of news and
Wikipedia categories (Zhang et al., 2015). For clas-
sification of HoC debates, Abercrombie and Batista-
Navarro (2018b) used ‘policy’ labels crowdsourced by
the parliamentary monitoring website https://www.
publicwhip.org.uk/ but found this framework lim-
ited as it could not be easily scaled up from the small
existing labelled dataset. Abercrombie et al. (2019) cre-
ated a manually annotated dataset of policy prefer-
ences in debate motions, and achieved promising re-
sults in classifying debate motions according to the
MARPOR coding scheme. However, this corpus is un-
suitable for our purposes as: (1) it does not include
speeches made in response to the motions; and (2) the
motions in this dataset are all substantive—that is, they
‘express an opinion about something’ (Rogers andWal-
ters, 2015), and tend to be of a highly partisan nature,
leading to debates in which the stance of MPs can be
trivially predicted from their party affiliations. For this
study, we seek amixture of motion types, more represe-
native of the Hansard record as a whole. Additionally,
while they classified debate motions with policy prefer-
ence labels using textual features derived from the mo-
tions themselves, many of themotions in Hansard—and
in the corpus used in this study—contain little in the
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way of informative textual content (Figure 1a is a typ-
ical example). Rather than the motions, we therefore
rely on features derived from the response speeches,
which we use as input for the classification of both mo-
tions and speeches.

Multi-task learning approaches have been taken to
many tasks, including part-of-speech tagging, chunk-
ing, and named entity recognition (Collobert and We-
ston, 2008). While such approaches have been applied
to sentiment classification of customer reviews (Yu and
Jiang, 2016), we are not aware of any uses of multi-task
learning in the legislative debate domain. The most
common approach to multi-task learning—which we
compare with the single task paradigm—is that of hard
parameter sharing, first proposed by Caruana (1993).

4 Data
ParlVote (Abercrombie and Batista-Navarro, 2020) is a
large corpus (34,010 examples) of HoC debate speeches
made between from 1997 and 2019. Each example
speech consists of the concatenated utterances of an
individual speaker in a given debate, and is presented
with the debate motion to which it responds, as well
as the vote of the speaker (in support or opposition to
the motion), and metadata associated with the debate
and the speakers. We adapted this corpus to include
an additional, manually annotated policy preference la-
bel for each example. As capitalization can be informa-
tive in this domain (for example in the terms of address
‘Friend ’, ‘Lady’, ‘Gentleman’), we did not lowercase the
text.

4.1 Annotation
We adapted the ParlVote annotation guidelines to in-
clude the new codes used in the updated MARPOR
Coding Scheme version 5 (Werner et al., 2015). We
make our guidelines available at https://tinyurl.
com/y5twunrm.

The first author of this paper annotated each de-
bate motion following these guidelines. Included in the
guidelines were instructions to code examples featur-
ing the following types of motions with the label 000:
No meaningful category applies:

• Business of the House motions, Programme mo-
tions, other timetabling and procedural motions,
and motions to sit in private. Although MPs may
use such motions politically, on the face of it they
are concerned simply with the running of Parlia-
ment, rather than policy.

• Debates with divisions that are not on themotion
in question. In many cases the division held at
the end of the debate is held on some other point

that has been brought up during the debate, such
as an amendment introduced by the Speaker.

• Motions that appear to fit several codes, such as
Finance Bills, Local Finance Bills, and Bills con-
cerning the budgets of e.g., Police forces. Within
the area of budgetary Bills is the exception of mo-
tions debates concerning approval of European
Union (EU) Finance Bills, which tend to be posi-
tive or negative about the EU.

• Motions concerning constituency boundary
changes.

We excluded all examples given this label from the
dataset used for the experiments reported below as
they cover a wide range of topics and/or do not fit into
any of theManifesto Project codes. While 56 of the pol-
icy preference codes were used as labels by the anno-
tators, we also excluded all examples with policy pref-
erence codes that occur fewer than 100 times in the
dataset, leaving 34 codes used in the classification ex-
periments. This left 23,181 example speeches given by
1,321 unique MPs given in response to 1,215 different
debates. Each example has a manually annotated pol-
icy preference label and a vote-derived speech stance
polarity label. Of these, 305.1: Political Authority: Party
Competence is the most common, with 4,926 labelled
examples (see Appendix A).

Each instance in the corpus also retains it’s sup-
port/oppose label from the original ParlVote corpus,
which we use to label the stance taken in each speech
towards the policy under debate.

4.2 Inter-annotator agreement

In order to validate the new motion policy preference
labels, we recruited a second annotator to label a ran-
domly selected subsection of the corpus. After annota-
tion, comparison, and discussion of some initial train-
ing examples, she labelled 108 motions (8.9% of the to-
tal). On this subset, we calculated a Cohen’s kappa
agreement score of 0.38, which can be interpreted as
representing ‘fair’ (Landis and Koch, 1977) or ‘poor’
(Fleiss et al., 1981) agreement. This is comparable to
other studies of annotation using theManifesto Project
codes (Lacewell and Werner, 2013; Mikhaylov et al.,
2008), and similar to agreement on election manifestos
for which the labelling scheme was originally designed
(Abercrombie et al., 2019). The level of agreement high-
lights that this is a non-trivial task on which agree-
ment between different human annotators is difficult to
achieve. Despite this issue of annotation reproducibil-
ity, these labels are considered to be valid by political
scientists—as evidenced by Volkens et al. (2015), who
found 230 articles that use this annotated data in the
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eight journals they examined. With comparable inter-
annotator agreement, we consider them to be the best
available labelling scheme for our task.

We make the adapted dataset, ParlVote+, available
for the research community at: https://tinyurl.
com/y22rrta7.1 There, we also provide a full data
statement, following the guidelines of Bender and
Friedman (2018).

5 Method
We investigate approaches to determining, for each ex-
ample in the dataset, (a) the policy preference expressed
in the debate motion, and (b) the sentiment (position)
expressed in the speech towards that motion: support
(positive) or oppose (negative).

We compare the performance of systems comprised
of combinations of the following:

• Learning paradigms (see Figure 2):

– Single tasks: inputs are processed sepa-
rately for the two tasks, as in previous work.

– Multi-task learning: we use a ‘hard param-
eter sharing’ framework (Ruder, 2017), in
which the network shares inputs and pa-
rameters in one hidden layer and trains two
further task-specific layers separately.

• Debate models:

– Motion-independent: all examples are
trained and evaluated together.

– Motion-dependent: Abercrombie and
Batista-Navarro (2018a) showed that
Government-proposed motions tend to be
positive and those tabled by opposing par-
ties negative, and that this could be used as
a proxy for the polarity of the motions. We
classify examples from debates initiated by
members of the governing and opposition
parties separately.

• Text representations:

– Bag-of-words (BOW): we used term
frequency-inverse document frequency
(tf-idf) scores of terms in the dataset
to select unigram features (as previous
work suggests that the addition of higher
n-gram features does not improve perfo-
mance in this domain (Abercrombie and

1Note this URL links to an anonymised Google Drive folder. Link
to a permanent data repository will be provided on acceptance.
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Figure 2: Single and multi-task learning paradigms.

Batista-Navarro, 2018a)). Aside from not
lowercasing the text, we used the default
settings from scikit-learn to tokenize and
extract ti-idf features from the texts.2

– Contextual word embeddings: we fine-
tuned BERT embeddings (Devlin et al.,
2019) on our classification tasks. Systems
using this approach have achieved state-
of-the-art performances, and have been
applied to the two tasks of interest in this
domain (Abercrombie et al., 2019; Aber-
crombie and Batista-Navarro, 2020). As we
included uppercase characters in the input,
we used the large, cased version, available
at https://tfhub.dev/google/bert_
cased_L-12_H-768_A-12/. We use
Google’s BERT tokenizer,3 and pad the
texts to the maximum input of 512 tokens,
then fine-tune the top 3 layers of the BERT
model. The (fine-tuned) final layer of BERT
embeddings is then used as input to one of
the following neural classifiers.

• Machine learning classification algorithms. We
used neural networks of two hidden layers, with
the second of these separated into two task-
specific layers in the multi-task learning setting
(see Figure 2). We used Adam optimization with
a learning rate of 1 ∗ 10−5, a batch size of 32
and, with the BOW input only, a dropout rate
of 0.5 for each layer.4 For binary (speech senti-
ment) and multiclass (motion policy preference),
we used sigmoid and softmax activation layers,

2https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

3https://github.com/google-research/bert/blob/
master/tokenization.py

4Opitimzation experiments showed that dropout negatively influ-
enced the performance using BERT (see Appendix B).
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Learning Text Machine learning Policy pref. Sentiment Policy-focused stance
paradigm representation method Ind. Dep. Ind. Dep. Mean Absolute

— — Majority class 1.1 1.1 35.8 35.8 18.5 18.5 0.3 0.3
MLP 58.0 64.1 61.2 70.8 59.6 67.4 33.3 45.2

BOW
CNN 53.1 59.5 61.5 70.1 57.3 64.8 29.9 40.8
MLP 50.4 57.2 61.1 67.6 55.8 62.4 28.7 36.4

Single-task
BERT

CNN 43.0 52.5 64.3 71.7 53.7 62.1 25.2 35.6
MLP 56.0 52.7 63.9 74.3 60.0 63.5 34.1 38.2

BOW
CNN 38.2 38.5 58.5 68.8 48.4 53.7 19.9 21.8
MLP 50.9 43.7 60.1 72.8 55.5 58.2 27.9 29.1

Multi-task
BERT

CNN 44.4 41.1 59.4 70.6 51.9 55.8 23.9 25.4

Table 1: Macro-averaged F1 scores for classification of policy preference (multiclass), speech sentiment (binary), and
policy-focused stance using motion-independent (Ind.) and motion-dependent (Dep.) debate models. Stance scores are
reported as both the mean of the policy preference and sentiment scores and the absolute F1 score. The highest F1
scores for each task are highlighted in bold text.

respectively. We used early stopping and tested
on the model that performed best on the vali-
dation set. Hyperparameters were chosen based
on optimisation experiments, the results of which
are presented in Appendix B.

We compared the following classes of network:

– Multi-layer perceptron (MLP): we used a
network with hidden layers of 512 nodes
and ReLU activation.

– Convolutional neural network (CNN): a net-
work of one-dimensional convolutional lay-
ers with 512 filters, convolution windows
spanning three tokens, and max pooling.

We used a randomly sampled 80/10/10 split of the
data. The experiments can be reproduced using our
python notebook, which we make available with all
code and data at https://tinyurl.com/y62jrkyt.

6 Results
We evaluated the systems described above against the
majority class for each task. Slight differences in these
baseline scores in the motion-dependent and indepen-
dent settings arise from variations in the class distri-
butions in the test sets in these settings. Due to the
class imbalances in the dataset, we report the macro-
weighted F1 score as the evaluation metric.

6.1 Overall results
Results are presented in Table 1. Here, policy-focused
stance represents the sentiment polarity of speakers to-
wards the policy preference under debate. We report
two measures of this for each system configuration: (1)
the mean of the F1 scores for policy preference identifi-
cation and sentiment classification, and (2) the absolute

F1 where only examples for which both predicted labels
match the true class labels are considered to be correct.

Most of the tested system configurations outper-
formed the naive baselines. In most cases, the motion
dependent models performed better than those that
did not take into account this aspect of debate struc-
ture. Overall, contrary to our hypotheses, neither BERT
nor the multi-task learning paradigm improved perfor-
mance over the BOW and single-task set-ups. BERT-
based systems tended to perform poorly on policy pref-
erence identification in the motion-dependent setting,
perhaps due to the low number of examples per class
combined the with loss of information due to BERT’s
maximum sequence length. The MLP classifier per-
formed better than the CNN in nearly all scenarios. The
highest overall F1 score for the combined tasks (67.4
mean, 45.2 absolute) was obtained by using single task
learning with BOW and MLP in the motion-dependent
setting. It is notable that the policy preference detection
scores (using BOW) are comparable to those obtained
by Abercrombie et al. (2019), despite using completely
different input texts, having no access to the content of
the motions themselves.

6.2 Results using shorter input speeches

The lower, poorer performance of BERT text represen-
tations in all settings is perhaps due to its the 512 token
sequence input limit. With the mean number of tokens
per speech in the ParlVote corpus over 700, in many
cases, much potentially important information cannot
be included when using this framework. Bearing this
in mind, in order to test the potential of BERT for this
task, we also ran the single taskMLP classifier on a sub-
set of the data consisting solely of the 13, 162 speeches
in the dataset that consist of 512 tokens or fewer (calu-
clated using the scikit-learn tokenizer). Results of these
experiments are shown in Table 2.

F1 scores here are lower than when using the full
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Text Policy Speech Policy-focused stance
representation preference sentiment Mean Absolute

Ind. Dep. Ind. Dep. Ind. Dep. Ind. Dep.
Majority class 0.1 0.1 36.0 36.0 18.1 18.1 0.3 0.3

BOW 32.6 40.9 56.3 58.3 44.5 49.6 17.7 19.3
BERT 34.9 45.0 51.0 62.8 43.0 53.9 18.5 24.8

Table 2: Macro-averaged F1 scores for classification of policy preference (multiclass), speech sentiment (binary) and
policy-focused stance (mean of these scores) using BOW and BERT-based text representations in the single-task–MLP
classification setting on shorter speeches of 512 tokens or fewer.

Code Policy pref. Sentiment Stance (mean) Code Policy pref. Sentiment Stance (mean)
104 83.8 68.4 76.1 411 84.6 81.2 82.9
105 57.1 47.5 52.3 413 45.5 72.7 59.1
106 76.2 61.1 68.7 501 65.0 46.4 55.7
108 67.5 58.6 63.1 503 46.7 69.3 58.0
110 65.9 54.9 60.4 504 65.4 75.0 70.2
201.2 56.9 55.3 56.1 505 78.2 67.3 72.8
202.4 76.9 76.4 76.7 506 50.0 74.7 62.4
203 31.6 57.8 44.7 507 56.1 69.3 62.7
204 69.8 55.2 62.5 601.2 36.4 59.0 47.7
301 54.5 67.0 60.8 602.2 36.4 47.6 42.0
302 41.0 54.5 47.8 603 52.8 60.0 56.4
304 52.6 47.4 50.0 604 69.8 53.7 61.8
305.1 83.5 74.6 79.1 605.1 79.4 66.4 72.9
305.2 33.3 59.0 46.2 605.2 60.8 64.7 62.8
401 51.8 68.3 60.1 701 48.5 71.8 60.2
402 44.7 64.4 54.6 702 47.1 71.7 59.4
403 61.1 62.0 61.6 706 42.1 78.9 60.1

Table 3: F1 scores for policy preference, sentiment, and (mean) policy-focused stance by policy preference code. Highest
scores for each task are bold, contrastive pairs of policy preference codes in grey boxes.

dataset due to the smaller size of the training set. How-
ever, the fact that under these conditions use of BERT
outperforms BOW, shows the importance of providing
BERTwith the full speech, and indicates that where this
is possible fine-tuning on BERT should lead to improved
performance over the BOW model.

6.3 Results by policy preference class

Examining the performance of one of the best per-
forming system configurations—the single-task–BOW–
MLP–motion-dependent system—for each (true) policy
preference label (Table 3), there are a wide variety of
scores for each task.

Each policy preference class received between four
and 21 predicted labels in the classifier output (𝜇 =

10.4). Labels with contrastive pairs did not necessarily
seem to bemore difficult to predict than individual class
labels, with, for example 104: Military: Positive obtain-
ing one of the highest F1 scores for policy preference de-
tection. Similarly, code 411: Technology and Infrastruc-
ture: Positive is in the Economy domain, which contains
a number of fairly similar codes. However, this code
concerns a well defined topic, and has no directly con-

trastive partner class, and obtained the highest scores
overall. This suggests that the model can struggle to
differentiate between the closely related, but opposing
policy preference classes.

264 examples (22.1% of errors) were classified incor-
rectly for both policy preference and stance, 520 (43.6%)
for policy preference only, and 410 (34.3%) for stance
only. Figure 3 shows the predicted policy preference
labels with respect to the true labels assigned by the
annotators. Where mis-classifications occur, the classi-
fier does not tend to prefer closely related labels, with
more than double the number of out-of-domain (69.9%)
to in-domain (31.1%) mis-classifcations. This suggests
considerable overlap of language use in policy domains
such as 4: Economy and 5: Welfare and Quality of Life,
where issues relating to both may frequently be dis-
cussed in the same debates, and on which the anno-
tators frequently disagreed.

6.4 System output analysis

To gain an understanding of the challenges involved
in improving classification performance on these tasks,
we examined in closer detail the output of the single-
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All + - Gov. Opp. Own Other Gov.+ Gov.- Opp.+ Opp.-
Max 0.44 0.44 0.28 0.25 0.44 0.38 0.44 0.25 0.23 0.44 0.38
Mean -0.01 -0.01 -0.02 -0.02 -0.01 -0.01 -0.02 -0.02 -0.02 -0.01 -0.01
Min -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.38 -0.31 -0.38 -0.31

Own Own Oth. Oth. Gov. Gov. Gov Gov- Opp. Opp. Opp. Opp.
+ - + - own+ own- oth+ oth- own+ own- oth+ oth-
0.25 0.38 0.25 0.25 0.25 0.21 0.19 0.25 0.25 0.38 0.44 0.28
-0.01 -0.02 -0.01 -0.02 -0.02 0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.01
-0.38 -0.31 -0.38 -0.31 -0.31 -0.381 -0.31 -0.38 -0.38 -0.31 -0.38 -0.31

Table 4: Mean sentiment scores for all speeches, supportive (+)/oppositional (-) speeches, replies to Govern-
ment/opposition party motions, responses to own/other party motions, and all combinations of these three factors.

Figure 3: True policy preference labels and the labels
predicted by the classifier.

task–BOW–MLP–motion-dependent system.

6.4.1 Features of speech polarity

In these experiments, we found that performance was
improved by modelling debate structure in the motion-
dependent setting. This supports the findings of Aber-
crombie and Batista-Navarro (2018a), who observed
that the textual features that discriminated between
supportive and oppositional speeches were not typi-
cally positive or negative when used in other domains.

To investigate how sentiment is manifested in this
domain, we first calculated the general-domain senti-
ment scores of the tokens in each speech example in
the test set on a scale of [−1, 1] by looking up the terms
in the sentiment lexicon SentiWordNet 3.0 (Baccianella
et al., 2010). These scores are shown in Table 4.

The mean sentiment of speeches overall is very
slightly negative (-0.01), according to the lexicon. Over-
all however, there is little difference between support-
ive and oppositional speeches in the polarity of lan-
guage used. This is also the case for speeches given
in different scenarios, such as in response to Govern-
ment/opposition motions, by speakers addressing mo-
tions proposed by members with their own or with dif-
ferent party affiliations, or any combinations of these
factors. This demonstrates once again that terms used
in parliamentary debate speeches do not usually ex-
press the same sentiments that they may be expecteed
to do in general usage.

To examine which terms in the speeches do indi-
cate sentiment, we obtained the permutation impor-
tance scores of each unigram in the input vocabulary.
That is, for feature 𝑗 in the feature set N, we calcu-
lated the permuation feature importance as the differ-
ence between performance (in this case, the F1 score)
using the original datset D and a corrupted version �̃� ,
in which 𝑗 has been randomly shuffled (Breiman, 2001).
We consider features with higher scores to be more im-
portant to the model. A sample of the most important
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Motion-independent Motion-dependent
All Government Opposition

Labour +0.13 approach +0.17 Minister 0.00
Gentleman +0.13 average 0.00 Opposition −0.07
shadow −0.09 costs −0.03 Prime +0.09
Prime +0.09 police +0.13 welcome +0.19
party 0.00 contrast 0.00 shadow −0.09
cuts +0.01 registration 0.00 Is +0.02
Lady 0.00 officers 0.00 continue 0.00
situation −0.08 proposals 0.00 best +0.38
threat −0.28 hit −0.03 look 0.00
outside 0.00 tier +0.06 Members 0.00
pay +0.06 fees +0.19 Secretary 0.00
Lords 0.00 chance +0.08 ensure 0.00
crisis −0.06 labour +0.13 way +0.01
Government 0.00 constituency 0.00 suggestion −0.05
constituents 0.00 dealt 0.00 public −0.04
wants −0.06 running 0.00 motion 0.00
important +0.08 data 0.00 Clearly +0.19
careful +0.19 willingness +0.13 support +0.09
week 0.00 tackling 0.00 worse −0.29
stop −0.02 strategy +0.06 said 0.00

Table 5: Top 20 discriminating features for the motion-independent setting (all speeches), and, in the motion-dependent
setting, responses to Government- and opposition-proposed motions, together with their mean SentiWordNet scores.
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Figure 4: Distribution frequencies (histograms and density curves) of the correct and incorrect predicted probabilities of
sentiment labels being positive for three categories of speech: those by all speakers, and intra- and inter-party responses.

features (the top 20) in each setting according to this
metric is shown in Table 5

Comparing (the lemmas of) these terms with their
SentiWordNet scores (means over all word senses), it
seems that the features that are indicative of support
or opposition are not those that would typically be
used for subjective expression in general English usage.
Rather, many are parliamentary terms, such as forms
of address, and other proper nouns. This is particularly
true for speeches addressing opposition-proposed mo-
tions.

6.4.2 Party affiliations

As MPs usually vote along party lines, it would be pos-
sible to achieve good sentiment classification results by
setting a classifier to make predictions on that simple
basis alone. On the other hand, we also know that MPs
are more free to ‘rebel’ against their parties in their
speeches than in their voting behaviour (Proksch and
Slapin, 2015). To investigate how this effects sentiment
polarity classification, we compared the performance of
rebel MPs—those voting against a motion proposed by
their own party or in support of one proposed by an-
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Stance ✓ PP ✓, sent. ✗ Sent. ✓, PP ✗ Stance ✗
n examples 1120 404 492 303
Max. tokens 20730 6505 6484 4742
Mean tokens 876.9 916.5 761.4 867.6
Min. tokens 2 2 2 2
Std. deviation 1213.9 953.2 1115.6 4742
< 50 tokens 103 43 61 35
>= 50 tokens 1017 361 431 268

Table 6: Number of speeches by token counts and prediction outcome (✓= correct and ✗= incorrect).

other party—and loyal MPs. This produced F1 scores
of 77% and 66% respectively. The lower performance
on loyal voters may suggest that, on occasion, speak-
ers may use language that goes some way towards
supporting the position of their opponents, while ulti-
mately voting with their parties, and that these cases
may be harder to detect than outright rebellions.

The frequency distribution plots in Figure 4 present
a closer look at this. They show the predicted proba-
bilites of examples being assigned to the positive class.
We compare the probability distributions for correctly
and incorrectly predicted testset examples. These den-
sities are shown in three settings: all predictions, intra-
party speeches (made in response to motions proposed
by an MP with the same party affiliation), and inter-
party responses (replies to a member of another party).

There are a number of clear patterns in the distri-
butions. Overall, the system tends to make more confi-
dent predictions for examples that it predicts correctly
(that is, it outputs probabilities towards 0.0 for nega-
tive and 1.0 for positive examples), and is less confi-
dent about examples that it predicts incorrectly (closer
to 0.5), as might be expected. In the intra-party set-
ting, the model outputs high probablities that it assigns
to the positive class (correctly, more often than not).
Meanwhile, negative predictions (usually incorrect) are
made with probabilites that tend towards 0.5 (that is,
with low certainty). For inter-party response speeches,
this pattern is reversed, albeit not to as dramatic an ex-
tent. This may be due to situations in which, for ex-
ample, multiple opposition parties collaborate against
the Government, which introduce some noise into this
analysis. Ultimately, the patterns seen here suggest
that the language used in the speeches may often say
more about the speakers’ party affiliations than it does
about about the nuances of individual speaker stance.

6.4.3 Input speech length

The length of speeches does not seem to greatly af-
fect classification, with examples that are classified cor-
rectly, partially correctly, and completely incorrectly
having similar distributions of token numbers (see Ta-
ble 6).

Some previous work has excluded speeches of fewer
than 50 tokens under the assumption that they are un-
likely to contain enough information to express senti-
ment (Abercrombie and Batista-Navarro, 2018a; Salah,
2014). There are 2,941 such speeches in ParlVote, which
are fairly balanced between the positive and negative
classes (53/47%) and a very similar distibution of pol-
icy preference labels as the main dataset. In the ex-
periments, 67.8% of these shorter examples were clas-
sified correctly for speech sentiment (compared with
69.5% of examples of any length), and 42.6% of ex-
amples < 50 classified correctly on both tasks (48.1%
for the whole dataset). With examples of both very
short speeches (such as two-word speeches like ‘Hear
hear’, ‘Under Labour’–both negative stance) and the
longest speech examples classified correctly, it seems
that speech length is not an important factor in perfor-
mance for the BOW-based systems.

7 Discussion and conclusion

Policy-focused stance detection of parliamentary
speeches is a challenging task, which we have framed
as combined binary and multiclass classification.
For this, we enhanced an existing dataset with an
additional set of policy preference labels. While
inter-annotator agreement on policy preference labels
is modest, it is similar to that reported in previous
work on both parliamentary debates and election
manifestos. To address the issue of low annotator
agreement, and the fact that classifiers frequently
misclassify speeches across policy domains, future
work could take a perspectivist approach to annotator
disagreement (Basile et al., 2021a,b), and consider
reframing the task as a multiclass and multilabel
problem, in which more than one policy preference
code may be valid per speech. Notwithstanding this
issue, and despite the large number of classes in the
policy prediction task, and the fact that the input
features we used were based only on the content of
speeches (not the motions or titles, as in previous work
(Abercrombie et al., 2019)), we have been able to obtain
reasonable results, comfortably beating the majority
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class baselines.
Modelling of the structure of parliamentary de-

bates in the form of motion-dependent classification
was seen to improve performance on speech sentiment
classification in prior work. In this study, we found
that it is not only consistently superior for speech sen-
timent classification, but also improves the identifica-
tion of policy preferences, the topics under discussion.
We have shown that the differences between support-
ive and opposing speeches do not derive from generally
sentiment bearingwords, but from the relationships be-
tween the speaker, the MP who proposes the motion in
question, and the party affiliations of both actors.

The application of multi-task learning did not, in
most configurations, improve system performances.
However, we used a fairly simple framework in which
just one of the network’s hidden layers was shared with
one further hidden layer per classification task. There
is therefore plenty of scope for further experimentation
with more complex architectures for this approach.

In these experiments, fine-tuning on BERT embed-
dings led to considerably worse performances. Consid-
ering the widespread successes of this approach, this
also warrants further investigation. With recent work
suggesting that, for real-world tasks and datasets, pre-
training the embeddings on in-domain data may be
necessary (Xia et al., 2020), a more domain-specific ap-
proach may be desirable.

While other work on sentiment and stance detec-
tion in the domain of parliamentary debates has ef-
fectively overlooked the targets of those opinions, we
have combined approaches to sentiment and topic de-
tection to formulate a task with potential for real-world
application. Although there remains much room for
improvement in classification performance, we have
shown that the task of policy-focused speech stance
detection can be feasibly automated, even with simple
features and neural architectures. Although we have
focussed our annotation effort and analysis on debates
from the UK Parliament, the proposed approach is gen-
eralisable to other legislatures, or indeed any political
debates that feature proposed motions and supporting
and opposing documents.

In future work, we will focus on refining the annota-
tion scheme in order to obtain greater labelling consis-
tency and improved classification performance, as well
as adapting the methods for the legislative debate do-
main.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their helpful comments and suggestions and
Nancy Greig for her diligent work on data annotation.

References
Abercrombie, Gavin and Riza Batista-Navarro. 2018a.
‘aye’ or ‘no’? speech-level sentiment analysis of
hansard UK parliamentary debate transcripts. In
Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan. European Language Resources As-
sociation (ELRA).

Abercrombie, Gavin and Riza Batista-Navarro. 2020.
ParlVote: A corpus for sentiment analysis of politi-
cal debates. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5073–5078,
Marseille, France. European Language Resources As-
sociation.

Abercrombie, Gavin and Riza Theresa Batista-Navarro.
2018b. Identifying opinion-topics and polarity of par-
liamentary debate motions. In Proceedings of the
9th Workshop on Computational Approaches to Sub-
jectivity, Sentiment and Social Media Analysis, pages
280–285, Brussels, Belgium. Association for Compu-
tational Linguistics.

Abercrombie, Gavin, Federico Nanni, Riza Batista-
Navarro, and Simone Paolo Ponzetto. 2019. Policy
preference detection in parliamentary debate mo-
tions. In Proceedings of the 23rd Conference on Com-
putational Natural Language Learning (CoNLL), pages
249–259, Hong Kong, China. Association for Compu-
tational Linguistics.

Augenstein, Isabelle, Tim Rocktäschel, Andreas Vla-
chos, and Kalina Bontcheva. 2016a. Stance detection
with bidirectional conditional encoding. In Proceed-
ings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 876–885, Austin,
Texas. Association for Computational Linguistics.

Augenstein, Isabelle, Andreas Vlachos, and Kalina
Bontcheva. 2016b. USFD at SemEval-2016 task 6:
Any-target stance detection on Twitter with autoen-
coders. In Proceedings of the 10th International Work-
shop on Semantic Evaluation (SemEval-2016), pages
389–393, San Diego, California. Association for Com-
putational Linguistics.

Baccianella, Stefano, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. SentiWordNet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In Proceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10), Val-
letta, Malta. European Language Resources Associa-
tion (ELRA).

Bar-Haim, Roy, Indrajit Bhattacharya, Francesco Din-
uzzo, Amrita Saha, and Noam Slonim. 2017. Stance

Northern European Journal of Language Technology



classification of context-dependent claims. In Pro-
ceedings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 1, Long Papers, pages 251–261, Valencia,
Spain. Association for Computational Linguistics.

Basile, Valerio, Federico Cabitza, Andrea Campagner,
and Michael Fell. 2021a. Toward a Perspectivist turn
in ground truthing for predictive computing. In Con-
ference of the Italian Chapter of the Association for In-
telligent Systems (ItAIS 2021).

Basile, Valerio, Michael Fell, Tommaso Fornaciari, Dirk
Hovy, Silviu Paun, Barbara Plank, Massimo Poesio,
and Alexandra Uma. 2021b. We need to consider dis-
agreement in evaluation. In Proceedings of the 1st
Workshop on Benchmarking: Past, Present and Future,
pages 15–21, Online. Association for Computational
Linguistics.

Bender, Emily M. and Batya Friedman. 2018. Data
statements for natural language processing: Toward
mitigating system bias and enabling better science.
Transactions of the Association for Computational Lin-
guistics, 6:587–604.

Bhavan, Anjali, Rohan Mishra, Pradyumna Prakhar
Sinha, Ramit Sawhney, and Rajiv Ratn Shah. 2019.
Investigating political herd mentality: A community
sentiment based approach. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 281–
287, Florence, Italy. Association for Computational
Linguistics.

Breiman, Leo. 2001. Random forests. Machine Learning,
45:5–32.

Budge, Ian, Hans-Dieter Klingemann, et al. 2001. Map-
ping policy preferences: Estimates for parties, electors,
and governments, 1945-1998, volume 1. Oxford Uni-
versity Press.

Burfoot, Clinton, Steven Bird, and Timothy Baldwin.
2011. Collective classification of congressional floor-
debate transcripts. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1506–1515,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Caruana, Richard A. 1993. Multitask learning: A
knowledge-based source of inductive bias. In Ma-
chine Learning Proceedings 1993, pages 41 – 48. Mor-
gan Kaufmann, San Francisco (CA).

Collobert, Ronan and Jason Weston. 2008. A unified
architecture for natural language processing: Deep

neural networks with multitask learning. In Proceed-
ings of the 25th International Conference on Machine
Learning, ICML ’08, page 160–167, New York, NY,
USA. Association for Computing Machinery.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Ferreira, William and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1163–
1168, San Diego, California. Association for Compu-
tational Linguistics.

Fleiss, Joseph L, Bruce Levin, and Myunghee Cho Paik.
1981. Statistical methods for rates and proportions.
John Wiley & sons.

Hardalov, Momchil, Arnav Arora, Preslav Nakov, and
Isabelle Augenstein. 2021. Cross-domain label-
adaptive stance detection. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, pages 9011–9028, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Hasan, Kazi Saidul and Vincent Ng. 2013. Stance clas-
sification of ideological debates: Data, models, fea-
tures, and constraints. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language Pro-
cessing, pages 1348–1356, Nagoya, Japan. Asian Fed-
eration of Natural Language Processing.

Ji, Yangfeng and Noah A. Smith. 2017. Neural discourse
structure for text categorization. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
996–1005, Vancouver, Canada. Association for Com-
putational Linguistics.

Küçük, Dilek and Fazli Can. 2020. Stance detection: A
survey. ACM Comput. Surv., 53(1).

Lacewell, Onawa P and Annika Werner. 2013. Coder
training: key to enhancing reliability and validity.
Mapping Policy Preferences from Texts, 3:169–194.

Landis, J. Richard and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1):159–174.

Northern European Journal of Language Technology



Li, Yingjie, Tiberiu Sosea, Aditya Sawant, Ajith Jayara-
manNair, Diana Inkpen, and Cornelia Caragea. 2021.
P-stance: A large dataset for stance detection in po-
litical domain. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages 2355–
2365, Online. Association for Computational Linguis-
tics.

Menini, Stefano, Elena Cabrio, Sara Tonelli, and Serena
Villata. 2018. Never retreat, never retract: Argumen-
tation analysis for political speeches. In Proceedings
of the AAAI Conference on Artificial Intelligence.

Menini, Stefano, Federico Nanni, Simone Paolo
Ponzetto, and Sara Tonelli. 2017. Topic-based agree-
ment and disagreement in US electoral manifestos.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2938–
2944, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Menini, Stefano and Sara Tonelli. 2016. Agreement and
disagreement: Comparison of points of view in the
political domain. In Proceedings of COLING 2016, the
26th International Conference on Computational Lin-
guistics: Technical Papers, pages 2461–2470, Osaka,
Japan. The COLING 2016 Organizing Committee.

Mikhaylov, Slava, Michael Laver, and Kenneth Benoit.
2008. Coder reliability and misclassification in Com-
parativeManifesto Project codings. In the 66th MPSA
Annual National Conference.

Mohammad, Saif, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016. A dataset
for detecting stance in tweets. In Proceedings of the
Tenth International Conference on Language Resources
and Evaluation (LREC’16), pages 3945–3952, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Proksch, Sven-Oliver, Will Lowe, Jens Wäckerle, and
Stuart Soroka. 2019. Multilingual sentiment analysis:
A new approach to measuring conflict in legislative
speeches. Legislative Studies Quarterly, 44(1):97–131.

Proksch, Sven-Oliver and Jonathan B Slapin. 2015. The
politics of parliamentary debate. Cambridge Univer-
sity Press.

Rogers, Robert and Rhodri Walters. 2015. How Parlia-
ment works. Routledge.

Ruder, Sebastian. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Salah, Zaher. 2014.Machine learning and sentiment anal-
ysis approaches for the analysis of Parliamentary de-
bates. Ph.D. thesis, University of Liverpool.

Sawhney, Ramit, ArnavWadhwa, Shivam Agarwal, and
Rajiv Ratn Shah. 2020. GPolS: A contextual graph-
based language model for analyzing parliamentary
debates and political cohesion. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 4847–4859, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Schiller, Benjamin, Johannes Daxenberger, and Iryna
Gurevych. 2021. Stance detection benchmark: How
robust is your stance detection? Künstliche Intelli-
genz.

Somasundaran, Swapna and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proceedings of the NAACL HLT 2010 Workshop on
Computational Approaches to Analysis and Generation
of Emotion in Text, pages 116–124, Los Angeles, CA.
Association for Computational Linguistics.

Sridhar, Dhanya, James Foulds, Bert Huang, Lise
Getoor, and Marilyn Walker. 2015. Joint models of
disagreement and stance in online debate. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pages 116–125, Beijing,
China. Association for Computational Linguistics.

Thomas, Matt, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
congressional floor-debate transcripts. In Proceed-
ings of the 2006 Conference on Empirical Methods in
Natural Language Processing, pages 327–335, Sydney,
Australia. Association for Computational Linguistics.

Vamvas, Jannis and Rico Sennrich. 2020. X-stance: A
multilingual multi-target dataset for stance detec-
tion.

Volkens, Andrea, Cristina Ares, Radostina Bratanova,
and Lea Kaftan. 2015. Scope, range, and extent of
Manifesto Project data usage: A survey of publica-
tions in eight high-impact journals. In Handbook for
Data Users and Coders. WZB.

Werner, Annika, Onawa Lacewell, and Andrea Volkens.
2015. Manifesto coding instructions: 5th fully revised
edition.

Xia, Patrick, Shijie Wu, and Benjamin Van Durme.
2020. Which *BERT? A survey organizing contextual-
ized encoders. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), pages 7516–7533, Online. Association for
Computational Linguistics.

Northern European Journal of Language Technology



Yu, Jianfei and Jing Jiang. 2016. Learning sentence em-
beddings with auxiliary tasks for cross-domain senti-
ment classification. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 236–246, Austin, Texas. Association for
Computational Linguistics.

Zhang, Xiang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 649–
657. Curran Associates, Inc.

Zubiaga, Arkaitz, Maria Liakata, Rob Procter, Geraldine
Wong Sak Hoi, and Peter Tolmie. 2016. Analysing
how people orient to and spread rumours in social
media by looking at conversational threads. PLOS
ONE, 11(3):1–29.

A The ParlVote+ corpus
Table 7 shows the number of example speeches that are
labelled with each of the MARPOR codes.

B Machine learning parameter
optimisation results

Results of preliminary experiments to select the optimal
size of CNN window, number of layers of BERT to fine-
tune, and dropout rate are shown in Tables 8, 9, and 10.

For the main experiments, the results of which are
presented in Section 6, we selected the parameters that
resulted in highest F1 scores in the majority of settings
in these preliminary tests: CNN window size of 3, fine-
tuning three layers of BERT, and a dropout rate of 0.5
in the BOW setting, with no dropout when using BERT.
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Code Name n Code Name n
000 No meaningful category 9524 407 Protectionism: Neg. 43
101 Foreign Relationships: Pos. 48 411 Technology: Pos. 137
102 Foreign Relationships: Neg. 12 413 Nationalisation 254
104 Military: Pos. 398 414 Economic Orthodoxy 54
105 Military: Neg. 181 416.2 Sustainability: Pos. 13
106 Peace 155 501 Environ. Protection 631
107 Internationalism: Positive 67 502 Culture: Positive 14
108 European Union: Pos. 1601 503 Equality: Positive 1336
109 Internationalism: Neg. 13 504 Welfare State Expansion 1410
110 European Union: Neg. 1063 505 Welfare State Limitation 976
201.2 Human Rights 469 506 Education Expansion 269
202.2 Democracy—General: Pos. 3 507 Education Limitation 404
202.3 Repr. Democracy: Pos. 1 601.1 National Way of Life: Pos. 11
202.4 Direct Democracy: Pos. 166 601.2 Immigration: Neg. 198
203 Constitutionalism: Pos. 144 602.2 Immigration: Pos. 173
204 Constitutionalism: Neg. 437 603 Traditional Morality: Pos. 326
301 Decentralisation: Pos. 570 604 Traditional Morality: Neg. 527
302 Centralisation: Pos. 398 605.1 Law and Order: Pos. 1399
303 Govt. and Admin. Efficiency 59 605.2 Law and Order: Neg. 602
304 Political Corruption 276 606.1 Civic Mindedness: Pos. 11
305.1 Political Auth.: Party 4926 607.2 Multiculturalism: Pos. 4
305.2 Political Auth.: Personal 312 608.2 Multiculturalism: Neg. 14
401 Free Market Economy 1061 701 Labour Groups: Pos. 576
402 Incentives: Positive 402 702 Labour Groups: Neg. 186
403 Market Regulation 988 703.1 Agriculture and Farmers: Neg. 25
405 Corporatism/Mixed Economy 2 705 Middle Class and Prof. Groups 78
406 Protectionism: Positive 40 706 Underprivileged Min. Groups 230

Table 7: Number of examples in the dataset labelled with each MARPOR policy preference code used. Codes used as
class labels in the classification experiments described in Section 5 are highlighted in bold text.

Window Text Learning Policy pref. Sentiment Policy-focused stance
size representation paradigm Ind. Dep. Ind. Dep. Mean Absolute

STL 53.1 59.1 61.5 70.1 57.3 64.8 30.0 40.8
BOW

MTL 38.2 38.5 58.5 68.8 48.4 53.7 19.9 21.8
STL 43.5 51.3 64.0 70.1 53.8 60.1 26.3 33.93

BERT
MTL 38.3 42.8 56.3 71.0 47.3 56.9 18.0 27.9
STL 32.6 40.4 56.3 58.2 44.5 49.3 17.7 19.3

BOW
MTL 1.0 1.45 36.0 37.6 18.5 19.5 0.3 0.5
STL 21.5 30.6 54.7 64.0 38.1 47.3 11.4 16.4

4
BERT

MTL 36.7 25.4 57.2 71.8 46.9 48.6 18.0 16.2
STL 52.5 41.4 61.0 66.2 56.8 53.8 29.6 23.9

BOW
MTL 0.40 – 36.0 – 18.2 – 0.1 –
STL 21.8 26.9 50.9 51.1 36.3 39.0 10.5 12.1

5
BERT

MTL 39.4 29.7 57.8 72.3 48.6 51.0 21.5 20.3

Table 8: Macro F1 scores for classification using CNN with windows of three, four, and five tokens.
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Fine-tune Learning Policy pref. Sentiment Policy-focused stance
layers paradigm Ind. Dep. Ind. Dep. Mean Absolute

STL 50.4 57.2 61.2 67.6 55.8 62.4 28.7 36.4
3

MTL 50.9 43.7 60.1 72.8 55.5 58.2 27.9 29.1
STL 45.7 53.6 61.1 73.0 53.4 63.3 24.9 37.1

6
MTL 36.0 36.2 64.7 63.9 50.4 50.1 21.0 21.4
STL 41.1 54.0 59.7 70.8 50.4 62.4 22.5 35.7

9
MTL 37.7 45.2 63.4 60.2 50.5 52.7 22.8 24.7

Table 9: Macro F1 scores for classification usingMLP and fine-tuning three, six, and nine of the 12 BERT layers. Highest
F1 scores for each learning paradigm are presented in bold, absolute highest scores are underlined.

Dropout Text Learning Policy pref. Sentiment Policy-focused stance
rate representation paradigm Ind. Dep. Ind. Dep. Mean Absolute

STL 58.0 64.1 61.2 70.8 59.6 67.4 33.3 45.2
BOW

MTL 56.0 52.7 63.9 74.2 60.0 63.4 34.1 38.2
STL 47.5 53.2 60.0 70.6 53.7 61.9 24.9 35.6

0.5
BERT

MTL 41.3 31.3 62.6 74.5 51.9 52.9 24.7 22.1
STL 54.0 60.3 59.3 68.9 56.6 64.6 30.1 42.0

BOW
MTL 53.6 51.1 64.0 74.2 58.8 62.6 32.4 38.5
STL 48.2 54.5 57.5 69.0 52.8 61.7 25.4 35.0

0.2
BERT

MTL 46.5 39.4 62.4 72.2 54.5 55.8 25.7 24.8
STL 50.7 56.7 57.9 68.1 54.3 62.4 28.4 38.5

BOW
MTL 49.9 47.7 63.2 73.7 56.6 60.7 29.3 35.9
STL 50.4 57.2 61.2 67.6 55.8 62.4 28.7 36.40.0

BERT
MTL 50.9 43.7 60.1 72.8 55.5 58.2 27.9 29.1

Table 10: Macro F1 scores for classification using MLP and different dropout rates: 0.5, 0.2, 0.0 (no dropout). For each
task and setting, highest F1 scores for each combination of text representation and learning paradigm are presented in
bold, absolute highest scores are underlined.
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Abstract Abstract Meaning Representation (AMR), originally designed for English, has been adapted to a number
of languages to facilitate cross-lingual semantic representation and analysis. We build on previous work and present
the first sizable, general annotation project for Spanish AMR. We release a detailed set of annotation guidelines and a
corpus of 486 gold-annotated sentences spanning multiple genres from an existing, cross-lingual AMR corpus. Our work
constitutes the second largest non-English gold AMR corpus to date. Fine-tuning an AMR-to-Spanish generation model
with our annotations results in an absolute BERTScore improvement of 8.8%, demonstrating initial utility of our work.

1 Introduction

Abstract Meaning Representation (AMR) represents
the core meaning of a sentence as a directed, rooted
graph focused on predicate-argument structure (Ba-
narescu et al., 2013) (figure 1). Nodes correspond
to concepts and labels denote relations between
concepts. Labels can be core roles functioning as
predicates or arguments, or other attributes such as
:location or :manner.

While there are large AMR-annotated corpora
available for English, cross-lingual adaptations of
AMR are necessary if AMR is to be useful as an in-
terlingua or intermediate representation for cross-
lingual tasks (Xue et al., 2014). Recent work has
adapted AMR to a variety of languages (§2.1), evalu-
ating cross-lingual efficacy of rolesets, word senses,
and how effectively AMR relations capture “who
is doing what to whom” in languages other than
English.

As AMR aims to abstract away frommorphosyn-
tax, its graph structure is closer to logic than a syn-
tactic parse. For English, AMR removes information
such as number, definiteness, tense, word class, and
word order. Yet, in many languages, morphosyn-
tactic information in languages other than English
carries rich, important semantic information be-
yond the “sugar” AMR intends to avoid. Therefore,
it is important when developing non-English AMR
annotation schema to both consider consistency
with work in other languages (primarily English)
as well as effectively reflecting the semantics of the
language being annotated as much as possible.

Spanish is one of the most widely spoken lan-
guages in the world. There has been one previous
proposal for adapting AMR to Spanish: Migueles-
Abraira et al. (2018) presented a corpus of 50 rep-
resentative annotations for a Spanish translation
of (The Little Prince) (LPP) (§2.2). While Migueles-
Abraira et al. (2018) noted that English AMR failed
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(a) (s / say-01

:ARG0 (p / prince

:mod (l / little))

:ARG1 (h / hurry-01)

:ARG1 (t / they)

:degree (g / great))

(b) (d / decir-01

:ARG0 (p / príncipe

:mod (p2 / pequeño))

:ARG1 (a / apresurado

:domain (t / th-pers-pl-sinnombre)

:degree (m / muy)))

Figure 1: English (a) and Spanish (b) AMRs for the
sentence “They are in a great hurry,” said the little
prince. (“Tienen mucha prisa,” dijo el principito.) in
PENMAN/text-based notation. The Spanish annota-
tion from Migueles-Abraira et al. (2018) is adapted
to our schema; th-pers-pl-sinnombre is an abbre-
viation of third-person-plural-sinnombre (§3.5)
in this example AMR.

to adequately capture semantic phenomena in Span-
ish, they indicated that accurate representation
could be accomplished by adding specific roles and
constructions. For example, the English and Span-
ish AMRs in figure 1, which annotate parallel sen-
tences, have two syntactic divergences due to inher-
ent differences between the languages (Wein and
Schneider, 2021).

We extend this prior work on Spanish AMR and
present the first substantial Spanish AMR corpus of
486 gold-annotated Spanish AMRs (§4). Specifically,
we annotate the Spanish sentences from the “Ab-
stract Meaning Representation 2.0 - Four Transla-
tions” dataset (Damonte and Cohen, 2020), a corpus
from the news domain that has become a popular re-
source for evaluation of cross-lingual AMR parsers
(Blloshmi et al., 2020; Procopio et al., 2021; Cai et al.,
2021) and that spans more genres than LPP.

To support the annotation, we develop annota-
tion guidelines that update and complete those pre-
viously established for Spanish (§3). As with prior
work, we find that AMR’s principle of abstracting
away from morphosyntax creates challenges for
representing meaning in agreement-rich languages
such as Spanish; we present solutions that may be
extendable to other languages that exhibit similar
linguistic phenomena (§3.14). Our work adds to

the development of non-English AMR schema and
discusses how to balance consistency and compati-
bility with standard English AMR while capturing
pertinent semantic information not explicitly en-
coded in English. Three annotators were involved
(§4); their work is verified with detailed analysis of
inter-annotator agreement and disagreement (§5).
Our annotations are publicly available on GitHub.1

Finally, to underscore the utility of our gold
annotations, we conduct an initial evaluation for
a cross-lingual generation task (§6). We show
that by fine-tuning an AMR-to-Spanish generation
model we are able to achieve an 8.8% increase in
BERTScore (Zhang et al., 2019) performance.

2 Related Work

2.1 Cross-lingual Adaptations of AMR

Though AMR was originally designed for English
(Banarescu et al., 2013), AMR’s abstraction away
frommorphosyntactic variation lends itself to cross-
lingual adaptation by capturing shared semantic
structure (Li et al., 2016). Cross-lingual adaptations
of AMR have been developed and evaluated for
Czech (Hajič et al., 2014), Chinese (Xue et al., 2014;
Li et al., 2016), Spanish (Migueles-Abraira et al.,
2018), Vietnamese (Linh and Nguyen, 2019), Korean
(Choe et al., 2020), Portuguese (Sobrevilla Cabezudo
and Pardo, 2019; Anchiêta and Pardo, 2018; Inácio
et al., 2022), Turkish (Azin and Eryiğit, 2019; Oral
et al., 2022), Persian (Takhshid et al., 2022), and
Celtic languages (Heinecke and Shimorina, 2022).

Abstraction can also create challenges, such that
changes are required to the annotation schema to
sufficiently account for language variation and per-
tinent linguistic phenomena in non-English AMR.
For example, a comparison between English and
Czech AMRs found that only 29 of 100 AMRs shared
identical structure, and that key differences arose in
event structure, multi-word expressions, and com-
pound nouns (Xue et al., 2014).

1The annotations are available at https://github.com/
shirawein/Spanish-Abstract-Meaning-Representation.

git. The associated sentences are available through the
Linguistic Data Consortium.
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2.2 PriorWorkAdaptingAMR to Spanish

Prior work has proposed an initial adaptation of
AMR to Spanish (Migueles-Abraira et al., 2018) us-
ing English AMR guidelines (Banarescu et al., 2019)
as a baseline to pilot annotation for Spanish sen-
tences. Seven key linguistic phenomena were iden-
tified as necessary to add to English AMR to capture
essential semantic information in Spanish: (1) NP el-
lipsis, (2) third person possessive pronouns, (3) third
person clitic pronouns, (4) varied se usage, (5) gen-
der, (6) verbal periphrases/verbal structure and lo-
cutions, and (7) double negatives. Guidelines were
developed for the first four of these phenomena, and
50 representative sentences of the Spanish transla-
tion of The Little Prince were annotated. Spanish
translations were made to be more literal so that
they would be more semantically equivalent to the
original translation of the work.

One limitation of the previous approach was the
use of English PropBank (Kingsbury and Palmer,
2002; Palmer et al., 2005) for sense annotation in-
stead of AnCora (Taulé et al., 2008) (§4.4), a similar
resource developed for Spanish. English PropBank
senses do not correspond one-to-one with their
Spanish verbs and bias word meanings towards
English-based semantics. Migueles-Abraira et al.
(2018) chose rolesets from English PropBank instead
of AnCora as it provided more coverage of words
in the corpus. Spanish words were translated to
English, and the sense from the English word was
attached to the Spanish word (Migueles-Abraira,
2017).

A second limitation of the previous Spanish
AMR annotation was the limited amount of change
to the English AMR guidelines to incorporate Span-
ish linguistic phenomena. Recent work has assessed
various differences between Spanish and English
annotations of the existing Spanish AMR adapta-
tion, classifying the type and cause of the identified
differences (Wein and Schneider, 2021).

3 Aims and Guidelines

Our primary aims with the development of this cor-
pus included the release of a (1) sizable, (2) general-
purpose Spanish AMR corpus, which can be use-
ful in the evaluation of cross-lingual AMR parsers,
(3) which effectively represents Spanish semantics.

We set out to meet these goals by (1) manually an-
notating 586 AMRs, (2) annotating the Four Trans-
lations dataset, often used for evaluation of cross-
lingual AMR parsers, and (3) developing guidelines
which consider a range of linguistic phenomena. In
this section, we discuss the key considerations and
linguistic phenomena we prioritize in our approach
to Spanish AMR annotation.

3.1 Use of English and Connection to En-
glish AMR Guidelines

Our guidelines are developed in reference to the En-
glish AMR Guidelines,2 outlining the differences be-
tween our annotation schema of Spanish sentences
and the annotation for English AMRs. As has been
popularized in other non-English AMR corpora
(Linh and Nguyen, 2019; Sobrevilla Cabezudo and
Pardo, 2019), we maintain the role labels and canon-
ical entity type list in English. For example, we use
:ARG0, :ARG1, etc., as well as :domain, :time, etc.,
and person, government-organization, location,
etc.

3.2 Verb Senses

We number verb senses according to the AnCora
lexicon,3 and supplement these with new senses for
out-of-vocabulary lexemes and meanings encoun-
tered in our data (table 1). Usage examples for these
senses are included in the guidelines.

3.3 Modality

The modal verbs deber (“must”, “should”) and
poder (“might”, “could”) appear in table 1 in the
list of words which appear in AnCora with other
senses. Though meanings of deber and poder
do appear in AnCora, we establish additional
senses to mark modality. These modals take the
same :ARG1 structure as do their English modal
equivalents—recommend-01 and possible-01, re-
spectively. These modals take the verb senses
deber-03 and poder-04.

2https://github.com/amrisi/amr-guidelines/blob/
master/amr.md

3http://clic.ub.edu/corpus/en/ancoraverb_es
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Verb AnCora? S# English Translation

auditar no -01 to audit
disuadir no -01 to dissuade
vagar no -01 to wander
hervir no -01 to boil

desvanecer yes -02 to fade
sobrecargar no -01 to overload
congestionar no -01 to congest (traffic)
incriminar no -01 to incriminate
circunvalar no -01 to encircle

adular no -01 to flatter
salir yes -11 to go out (with someone)

entrelazar no -01 to interlace
zonificar no -01 to zone
embotellar no -01 to bottle up

deber yes -03 [modal] to recommend
poder yes -04 [modal] to be possible

Table 1: Table of verb senses specification for anno-
tation of senses which are not covered by AnCora.
The “Ancora?” column indicates whether the verb
is included at all in AnCora, for any senses. If the
verb appears for other sense, the S# (sense number)
increases to the next available label.

3.4 Gender

In Spanish, all nouns have lexical gender (mascu-
line or feminine), which affects agreement. Nouns
relating to humans or animals will also be marked
with natural/interpretable gender, such as hermano
(“brother”) versus hermana (“sister”). Either way,
we remove only number information when lemma-
tizing the word for AMR, so niños (whether it means
“boys”, or “boys and girls”) will always be repre-
sented with the concept niño, and niñas (“girls”)
with niña. If any agreeing adjectives appear, the
gendered (singular) concept is annotated.

3.5 Pronoun Drop

Spanish belongs to a group of languages that al-
low pronoun drop (pro-drop), in which certain pro-
nouns can be omitted if they are grammatically or
pragmatically inferable from the surrounding lin-
guistic context. Pro-drop in Spanish occurs only
with subject pronouns and is permitted only in cer-
tain contexts (Española, 2010).4 Migueles-Abraira

4Subject drop is viable in Spanish due to inflection of person
and number in the verb. Other pro-drop languages permit the

et al. (2018) specify a special concept sinnombre
(“nameless”) for implicit references where no an-
tecedent in context is represented in the AMR. We
refine this approach to also encode person and
number for these implicit entities following the
standard format: first-person-sing-sinnombre,
first-person-plural-sinnombre, etc.

For example, in No sé que quiero (“I do
not know what I want”), there is an im-
plicit subject yo (“I”) that is reflected in
the verbal agreement. We therefore specify
first-person-sing-sinnombre as the agent. We
choose to use first-person-sing-sinnombre

instead of the reentrant yo (“I”) as the conditions on
the use of overt and dropped pronouns are typically
subject to information structure, an important
component of sentence meaning.
No sé que quiero. (“I do not know what I want.”)

(s / saber-01

:polarity -

:ARG0 (f / first-person-sing-sinnombre)

:ARG1 (h / querer-01

:ARG0 f))

If the pronoun is present (e.g. él, ella, usted, etc.),
the pronoun should be used in place of a sinnombre
concept.

3.6 Polite Second Person Addressee

Usted (“you”) can reflect either a polite usage of sec-
ond person, or third person. When usted is used as
a polite second person pronoun, the polite modifier
should be added: :mod-polite +. This follows the
same structure as :polarity -.

3.7 Third Person Possessives

We treat third person possessives similarly to the
English annotation, using the sinnombre concepts
discussed above. For example, we annotate su coche
(“his car”) the same way that “his car” is structured.
his car

(c / car

:poss (h / he))

elision of pronouns in other positions. Future work can look
at the impact of AMR’s abstraction away from morphosyn-
tactic information that allows phenomena such as pro-drop,
especially in translation and generation tasks.

Northern European Journal of Language Technology



su coche (“his car”)

(c / coche

:poss (e / third-person-sing-sinnombre))

The possessive pronoun su is ambiguous
(“his”/“hers”/“its”), and could be annotated as
third-person-sing-sinnombre (in the case of
“his”), second-person-sing-sinnombre (as in
“yours”), or third-person-plural-sinnombre (for
“theirs”). These labels are only required when the
use of su as a possessive pronoun is ambiguous.
For example, in the case of Sofía me mostró su auto
(“Sofía showed me her car”), su very likely refers
to Sofia’s. However, in Sofía copió su tarea (“Sofía
copied their homework”), this likely means that
Sofia copied someone else’s homework; su would
refer to some unnamed person, and would thus
require the use of third-person-sing-sinnombre.
Because su covers all third person possessives, this
distinction requires some interpretation by the
annotator based on context and meaning.

3.8 Third Person Clitic Pronouns

Clitics are treated as separate concepts, following
(Migueles-Abraira et al., 2018). For example, man-
darlo (“send it”) has a root of mandar (“send”) and
an ARG1 of the item being sent: lo (“it”).

(m / mandar-01

:ARG1 (l / lo))

3.9 Se Usage

Se has many uses in Spanish, including: (1) as a
reflexive pronoun, (2) to denote the passive voice,
(3) as a substitute for the indirect pronoun le/les,
and (4) as an impersonal pronoun.
Se as a Reflexive Pronoun. Reflexives are rep-
resented via reentrancies as in English AMR. Two
examples include the use of se in ellos se perjudican
(“they are harmed”) and in Pablo se ve (“Pablo sees
himself”).
Ellos se perjudican. (“They harm themselves.”)

(p / perjudicar-01

:ARG0 (e / ellos)

:ARG1 e)

Pablo se ve. (“Pablo sees himself.”)

(v / ver-01

:ARG0 (p / person

:name (n / name

:op1 "Pablo"))

:ARG1 p)

Se as a Passive Marker. When se reflects a pas-
sive voice for an omitted concept, we use the :ARG0
role label with se.
Se venden casas rurales. (“Rural houses for sale.”)

(v / vender-01

:ARG0 (s / se)

:ARG1 (c / casa

:mod (r / rural)))

Se as an Impersonal Pronoun. Se used to mean
“one” is annotated with the concept se-impersonal.
No se debe beber. (“One should not drink.”)

(d / deber-03

:polarity -

:ARG0 (b / beber-01)

:ARG1 (s / se-impersonal))

3.10 Double Negation

In Spanish, negation can be indicated by either sin-
gle or double negatives, with double negatives some-
times providing emphasis. We annotate both single
and double negation with the use of one polarity
marker.
No hay ninguna persona. (“There is nobody.”)

(h / haber-01

:polarity -

:ARG0 (p / persona))

3.11 Suffixes

Derivational suffixes such as diminutives should
be represented as modifier concepts. For example,
poquito (“very little”) would be annotated with poco
(“little”) being modified by muy (“very”).

(p / poco

:mod (m / muy))
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Another example would be hombrecito (“little
man”), for which would hombre (“man”) receive the
diminutive modifier of pequeño (“little”).

(h / hombre

:mod (p / pequeño))

3.12 Words that Change Meaning When
Singular Or Plural

In Spanish AMR as in English AMR, we annotate
the concept as the singular of the entity even if it is
plural. However, rarely in Spanish a word changes
meaning if it is plural instead of singular. In this
case we use the plural form of the word, such as
deber (duty) versus deberes (homework), or resto (re-
mainder) versus restos (human remains or rubbish).
Additionally, we distinguish algún from algunos,
for the case in which algún means “any” and al-
gunos means “some.” Similarly, we distinguish otros
(“others”) as a plural noun to mean a distinct group
of “others,” and preserve the plural otros instead of
making it singular as otro (“other”).

3.13 Comparison with Previous Work

The most notable difference between our approach
and that of Migueles-Abraira et al. (2018) is that
theirs uses Spanish labels while ours uses English
labels. Additional differences are largely due to
our choice to break down the unnamed category
of dropped entities into subcategories based on the
type of noun phrase or pronoun. For NP ellipses
(§3.5) and third person possessives (§3.7), we use the
6 tags outlined, which specify person and number.
Migueles-Abraira et al. (2018) uses a standardized
ente (“being”) concept with sinnombre (“nameless”)
argument for NP ellipses and a sinespecificar

(“unspecified”) argument for third person posses-
sives. In comparison to our annotation in §3.7 for
su coche (“his car”), the annotation in the corpus
from Migueles-Abraira et al. (2018) separates enti-
ties (ente) and the possessive pronoun itself. No-
tably, this annotation focuses more on the mor-
phosyntax than semantics:

(c / coche

:posee (e / ente

:sinespecificar (s / su)))

Our approach as well as that of Migueles-
Abraira et al. (2018) represents clitics as if they were
separated from the stem. We also both approach
se as a reflexive pronoun in the same way via reen-
trancy. However, the approach of previous work
omits se when it is used in the impersonal or pas-
sive voice, which we include via the se-impersonal
concept and ARG0 label, respectively (§3.9). We also
address the issues of se as a substitute for le or les
(§3.9), modality (§3.3), gender (§3.3), polite use of
usted (“you”) (§3.6), double negation (§3.10), diminu-
tive and augmentative suffixes (§3.11), meaning
change in the singular versus plural (§3.12), and
commas/decimals.

3.14 Limitations

Adapting standard English AMR to Spanish involves
striking a balance between faithfully capturing the
semantics of the Spanish sentence on the one hand,
and mirroring the English annotation schema on
the other. Here we discuss a few challenges.
Gender and Number Marking. The construc-
tion of Spanish interpretable/natural gender and
its relationship to morphosyntax are open ques-
tions (Donatelli, 2019). In our annotation schema,
we opted for simplicity, choosing not to explicitly
annotate gender, but to leave any gender-bearing
morphology as is in the concept. Migueles-Abraira
(2017) encodes gender explicitly by converting all
nouns to their masculine form, and adding a :masc
or :fem role label.

Like in English AMR, number inflection is re-
moved unless that would alter the meaning of the
stem (§3.12). The possibility of encoding number
and gender more explicitly is left to future work.
Idiomatic Expressions. Idiomatic expressions
are difficult to annotate with AMR. As is the case for
English, Spanish has numerous idiomatic expres-
sions, phrases that have a meaning different to that
of individual words in the phrase. Idiomatic expres-
sions are annotated on a case-by-case basis. In the
corpus, the majority of idiomatic expressions are
either condensed into one concept (por supuesto, “of
course,” becomes por-supuesto), or we must use a
similar, pre-existing verb to convey the expression’s
meaning, such as tener prisa (“to be in a rush”).
Limitations with AnCora. AnCora’s predicate
lexicon only includes verbs, unlike English Prop-
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Bank (Palmer et al., 2005), which has been extended
beyond verbs to include noun, adjective, and com-
plex predicates (Bonial et al., 2014). AnCora no-
tably lacks adjective frames and numerous idiomat-
ic/phrasal verbs. This posed a challenge when anno-
tating many adjectives and (often more colloquial)
verb phrases. When handling idiomatic verb usage,
it is easy (but problematic) for annotators to default
to using the structure of the equivalent English id-
iomatic structure, and substitute Spanish tokens
into the English structure. Some AnCora rolesets
were missing important core roles. Expanding An-
Cora or other Spanish propbank efforts would en-
hance any AMR annotations relying on it.
Mood. Spanish exhibits three grammatical
moods: indicative, imperative, and subjunctive. En-
glish AMR assumes all sentences to be in indicative
mood unless otherwise marked. There are two
categories for additional moods: imperatives are
marked with :mode imperative and expressive
utterances with :mode expressive. As this is a
very rudimentary treatment of the semantics of
mood, we choose not to adapt it for Spanish AMR.
Future work will look at how to integrate the
subjunctive mood into Spanish AMR at both the
verbal and sentential levels.

4 Annotation Methodology

4.1 Dataset

We perform annotations on the “AMR 2.0 - Four
Translations” dataset, which is released through
the Linguistic Data Consortium (Damonte and Co-
hen, 2020) and has become a popular evaluation
tool for cross-lingual AMR parsers (Blloshmi et al.,
2020; Procopio et al., 2021; Cai et al., 2021). This
dataset contains gold AMRs for English test split
sentences from the AMR Annotation Release 2.0
(Knight et al., 2017) alongside translations of those
sentences into Italian, Spanish, German, and Man-
darin Chinese. The sentences originate mostly from
news sources, including broadcast conversations,
newswire and web text—genres broader than but
complementary to the LPP corpus often used for
AMR annotation. The corpus contains 1,371 Span-
ish sentences and 5,484 sentences total. Of the 1,371
Spanish sentences, we directly annotate 486, en-
compassing 9,540 words. There are five documents

included in the Four Datasets dataset: Proxy re-
ports from newswire data (Proxy), translated Xin-
hua newswire data (Xinhua), BOLT discussion fo-
rum source data (DFA), DARPA GALE weblog and
Wall Street Journal data (Consensus), and BOLT
discussion forum MT data (Bolt). For Consensus,
Proxy, Bolt, and DFA, we annotate the first 100 sen-
tences of the document. Xinhua is 86 sentences in
total (averaging 22.37 words per sentence), so we
annotate all 86 sentences. Consensus is originally
100 sentences (averaging 15.61 words per sentence),
Proxy is originally 823 sentences (averaging 23.07
words per sentence), Bolt is 133 sentences (averag-
ing 20.25 words per sentence), and DFA is 229 sen-
tences long (averaging 17.83 words per sentence).

4.2 Annotator Training

Three undergraduate linguistics students, native
English speakers with high levels of Spanish profi-
ciency, were first trained in English AMR annota-
tion. Annotators were then trained in our approach
to Spanish AMR annotation, through discussions of
our v1.0 Spanish AMR guidelines. The Little Prince
corpus was used for practice annotation in both
languages. Once trained, the annotators moved on
to annotations of the Four Translations dataset. To
verify annotator understanding, we completed ad-
judication on the test sets of English and Spanish
annotations.

4.3 Collected Annotations

To validate our approach to annotation and the reli-
ability of our annotations, we collect annotations
from all three annotators for the first 50 sentences
from the Proxy document. We are then able to per-
form inter-annotator agreement analysis on those
overlapping annotations using Smatch, presented
in §5. Other than those 50 Proxy annotations, all
other annotations were distributed evenly between
each of the three annotators. The three annotators
produced 200, 190, and 196 annotations each. This
results in a total of 586 annotations total, for 486
unique sentences, with Proxy 1–50 being annotated
thrice (once by each annotator). After all annota-
tions for the initial 50 sentences were produced, a
final round of corrections were made for any er-
rors in annotation (without changing any divergent
judgment calls).
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AMR annotation is expensive and time-
consuming. Our 586 annotations took more than
200 hours to complete including some test anno-
tations and correction of annotations. This is also
a reflection of the sentences included in the AMR
2.0 - Four Translations dataset being especially dif-
ficult to annotate due to their complicated genre
and length (approx. 20 words per sentence). To
maximize the number of sentences with gold anno-
tations, we refrained from double-annotating the
remainder of the data beyond the aforementioned
50 sentences.

4.4 AnCora

We use the AnCora-Net Spanish lexicon of verbs
(AnCoraVerb-ES) for verb sense annotation (Taulé
et al., 2008). Similar to PropBank for English, the
AnCora lexicon is comprised of predicates, accom-
panied by their argument structures and thematic
roles. Each of the 2,647 predicate entries is also
related to one or more semantic classes depending
on its senses. AnCora also provides a lexicon of
deverbal nominalizations, AnCoraNom-ES, which
contains information regarding denotative type,
WordNet Synset, argument structure, and the verb
from which the noun is derived. As AnCoraNom-
ES significantly overlaps with AnCoraVerb-ES, we
choose not to use it in this work.

For all verbs or verb senses which did not ap-
pear in the AnCora corpus, we kept track of those
instances in a table and supplemented the AnCora
verb bank with 16 of our own. These added senses
can be seen in table 1.

4.5 StreamSide Annotation Tool

Annotations were produced using the Streamside
software (Choi and Williamson, 2021). The anno-
tators annotate tokens in the sentence as concepts,
and roles and arguments are then defined between
these concepts as relations. While this software al-
lows for annotation fitted to various languages, it
is best accustomed to annotation using the English
because the relevant PropBank roles (Kingsbury
and Palmer, 2002; Palmer et al., 2005) are automat-
ically populated. In our case, working on Spanish
and using the AnCora rolesets (Taulé et al., 2008),
the annotators needed to separately reference the
arguments for each concept on the AnCora website.

4.6 Guidelines Development

We developed the guidelines by first outlining our
approach to key Spanish linguistic phenomena,
which we identified as potentially impacting Span-
ish AMR annotation. Our v1.0 guidelines discuss:
(1) Use of English AMR Roles and Guidelines; (2)
Pronoun Drop and NP Ellipsis; (3) Third Person
Possessives; (4) Se Usage; (5) Gender; (6) Double
Negation; (7) Diminutive and Augmentative Suf-
fixes; (8) Estar (to be) as a Location.

These v1.0 guidelines were developed before per-
forming any annotation. Since starting annotation,
there have been 9 further iterations of the guide-
lines, which both expand on the items included in
v1.0 and incorporate additional items. We discuss
the most notable elements of the guidelines in §3.
After developing the first iteration of the guidelines
(v1.0), any further changes required to the guide-
lines, as identified during the annotation process,
were incorporated into the next iteration. All ex-
isting annotations were then uniformly altered by
their annotators to match the most updated guide-
lines.

5 Evaluation

5.1 Inter-Annotator Agreement

Table 2 shows the inter-annotator agreement (IAA)
scores for each pair of annotators on the 50 triple-
annotated Proxy sentences. The IAA scores were
calculated by averaging the Smatch scores across
the 50 sentence pairs for the annotators. The
Smatch (Cai and Knight, 2013) algorithm calculates
the amount of overlap between the AMR graphs to
determine similarity. Smatch using a hill-climbing
method to determine the optimal alignment be-
tween the variables in the AMR graphs and outputs
an F-score from 0 to 1, where 1 indicates that the
AMRs are isomorphic.

The average IAA scores ranged from 0.83–0.89,
a very promising range for AMR annotation agree-
ment. Comparable work achieved Smatch inter-
annotator agreement scores of 0.79 (Choe et al.,
2020), 0.72 (Sobrevilla Cabezudo and Pardo, 2019),
and 0.83 (Li et al., 2016). Otherwork on cross-lingual
AMR adaptations which only had one annotator did
not report IAA/Smatch scores.
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Ann. 1 & Ann. 2 0.89
Ann. 1 & Ann. 3 0.86
Ann. 2 & Ann. 3 0.83

Table 2: Average inter-annotator agreement scores
(via Smatch) for each pair of our three annotators
on the first 50 sentences of the Proxy document.

5.2 Disagreement Analysis

Disagreements, which we define as any discrepancy
that neither violates AMR guidelines nor deviates
from the sentence’s meaning, were common among
all three annotators. The majority of disagreements
are caused by differences in interpretation.

Entity versus Event Annotation. AMR takes
a predicate-centric approach to annotation. While
verbs are typically annotated as events and nouns
are annotated as entities (concepts without a num-
ber), when nouns or phrases have verbal counter-
parts, this can cause differences among annotators.
For example, propuesta (“proposal”) could be anno-
tated either as a noun or as a verb (proponer-01,
“to propose”). We instruct annotators to annotate
derived nouns as verbs and annotate related roles
as arguments for increased expressivity.

Verb Sense Labels. Verb senses account for nu-
ance in meaning depending on context. Sometimes
annotators chose different rolesets when the mean-
ing difference between senses was subtle. One no-
table example is the verb reconocer (“to recognize
/ acknowledge”). Reconocer-01 refers to recogniz-
ing something as official or true, as in reconocer
el estado (“to recognize the state”). Alternatively,
reconocer-02 maintains that meaning, but often
precedes a subordinate clause, as in reconocen que
gané (“they acknowledge that I won”).

Non-CoreRoleOverlap. Finally, annotators had
difficulty consistently choosing the same non-core
role (:poss, :mod, etc.) when the roles could overlap
in meaning. For example, la carta del hombre (“the
man’s letter”) could be annotated differently de-
pending on the interpretation of the man’s relation-
ship to the letter. An emphasis on the man’s own-
ership of the letter elicits the :poss role, whereas
emphasizing the letter’s creation by the man elicits
the :source role.

t5wtense 0.7389
Fine-tuned t5wtense 0.8265
XLPT-AMR 0.8534

Table 3: BERTscore results for: the output of the
t5wtense generationmodel without any fine-tuning,
t5wtense after fine-tuning with our data, and the
state-of-the-art XLPT-AMR cross-lingual AMR gen-
eration model (Xu et al., 2021) on our test split.

6 Fine-tuning a Spanish Genera-
tion Model

AMR generation produces text from an AMR. To
evaluate the utility of our dataset in practical NLP
tasks, we fine-tune the t5wtense generation model
of the AMR library amrlib to produce Spanish sen-
tences.5 The t5wtense generation model uses the
pretrained HuggingFace T5 transformer to convert
AMR graphs to text. We split our 486 annotations
into 110 sentences (test) and 376 (training).6

We compare the fine-tuned system output and
the un-tuned system output to the corresponding
Spanish reference sentences from AMR 2.0 - Four
Translations (Damonte and Cohen, 2020). We use
BERTScore, an automatic evaluation metric for text
generation (Zhang et al., 2019), to perform this com-
parison, as previous work has demonstrated that it
is the automatic metric most correlated with human
judgments for (English) AMR-to-text generation
systems (Manning et al., 2020).

For evaluating Spanish text, the default
BERTscore model is bert-base-multilingual-cased,
which is the model we use here. Table 3 shows
AMR-to-Spanish BERTscore results.

After fine-tuning t5wtense, we see a marked im-
provement in performance, increasing in BERTscore
by approximately 8.8% absolute (11.86% relative im-
provement). Current state-of-the-art cross-lingual
generation (Xu et al., 2021) achieves a BERTscore of
0.8534 on the same test set,7 which indicates that by
fine-tuning on only 376 Spanish AMR annotations,

5https://github.com/bjascob/amrlib
6We split the data as follows: Training set: Bolt 1–100,

Consensus 1–100, DFA 1–40, Proxy 51-100, Xinhua 1–86; Test
set: DFA 41–100, Proxy 1–50.

7Xu et al. (2021) report SOTA scores using BLEU. We com-
puted BERTscore on their system’s output.
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we are able to achieve results close to the current
best performing model.8 The marked improvement
resulting from our fine-tuning demonstrates the
utility of our corpus and suggests incorporating our
data into more sophisticated generation or parsing
models can lead to greater improvements.9

7 Conclusion

We have presented an updated approach to Spanish
AMR annotation which considers a broader range
of meaningful linguistic phenomena than previous
work. Using updated guidelines, we constructed a
corpus of 486 gold-annotated Spanish AMRs for the
“AMR 2.0 - Four Translations” dataset, achieving
high AMR inter-annotator agreement (0.83–0.89
IAA via Smatch). Gold Spanish AMRs will con-
tribute to ongoing evaluation and training of cross-
lingual AMR models; this is substantiated by our
results in §6, which improved an off-the-shelf AMR-
to-Spanish generation system by fine-tuning on our
data. Little prior work on AMR has set out to de-
velop large-scale gold corpora in languages other
than English; our work suggests that this is a fruit-
ful effort, both to foster a better understanding of
the cross-lingual properties of AMR and to improve
system performance on non-English NLP tasks.
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Abstract Most linguistic studies of Judeo-Arabic, the ensemble of dialects spoken and written by Jews in Arab lands, are qualitative
in nature and rely on laborious manual annotation work, and are therefore limited in scale. In this work, we develop automatic
methods for morpho-syntactic tagging of Algerian Judeo-Arabic texts published by Algerian Jews in the 19th–20th centuries, based
on a linguistically tagged corpus. First, we describe our semi-automatic approach for preprocessing these texts. Then, we experiment
with both an off-the-shelf morphological tagger, several specially designed neural network taggers, and a hybrid human-in-the-loop
approach. Finally, we perform a real-world evaluation of new texts that were never tagged before in comparison with human expert
annotators. Our experimental results demonstrate that these methods can dramatically speed up and improve the linguistic research
pipeline, enabling linguists to study these dialects on a much greater scale.

1 Introduction

Application of Natural Language Processing (NLP) to
real-world problems has been the field’s goal from
its early days. As algorithms advance, the contribu-
tion of NLP to real problems has become more evi-
dent and more substantial. The present study origi-
nates from a real-world challenge faced by linguists of
Semitic languages, in this case researchers of the Judeo-
Arabic dialects of Algeria (AJA). Their challenge, sim-
ply put, is how to scale up linguistic analyses of such
dialects. Semitic languages in general, and Arabic in
particular, are characterized by a very rich morphol-
ogy that uses both templatic and concatenative mor-
phemes, combined with the use of a vowelless script
(“abjad”). This makes morphological analysis of Arabic
very time-consuming even for expert linguists. Because
speakers of the AJA dialects are becoming scarce, the
attention of linguists in this field has shifted from field-
work interviews with native speakers to library-based
analysis of texts written in those dialects. Fortunately,
vast collections of AJA texts were preserved in printed
books, journals and handwritten manuscripts. Analyz-
ing this linguistic treasure-trove, however, is proving

∗Equal contribution
†Supported by the Viterbi Fellowship in the Center for Computer

Engineering at the Technion.

to be challenging due to its size. The time-consuming
manual annotation does not scale, and requires exper-
tise that is hard to find.

We aim to scale up the linguistic analysis of this
Arabic dialect using NLP tools. In particular, our goal
is to develop an NLP tool that will assist AJA linguists
in their real-world task, in a way that they will find it
useful. Basing our work on the existing linguistically
Tagged Algerian Judeo-Arabic (TAJA) corpus (Tirosh-
Becker and Becker, 2022), we set out to develop auto-
matic methods for morpho-syntactic tagging of such
texts. Several specially designed neural network tag-
gers and an off-the-shelf morphological tagger were ex-
perimented with, and assessed for their accuracy and
likely usefulness. We also considered a hybrid human-
in-the-loop approach. Finally, we carried out a real-
world evaluation of our best performing part-of-speech
(POS) taggers, applying them to untagged texts and as-
sessing their quality via a user study with expert AJA
linguists. Our experimental results demonstrate that
these methods can dramatically speed up and improve
the linguistic research pipeline, enabling linguists to
study this language on a much greater scale.
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2 Linguistic Background

Judeo-Arabic (JA) lies in the intersection of Semitic
languages and Jewish languages. As a Semitic lan-
guage, and more specifically, an Arabic language vari-
ety, its words are generally composed of 3-letter roots,
with added vowels and consonants according to pat-
tern paradigms, as well as affixes and clitics (McCarthy,
1981). Arabic is the most widely spoken Semitic lan-
guage, with 300 million native speakers (Owens, 2013).
In fact, the term ‘Arabic’ refers both to Modern Stan-
dard Arabic (MSA) and to the Arabic dialects spoken
throughout the ArabWorld. The two varieties of Arabic
coexist in a state of diglossia (Ferguson, 1959) or con-
tinuuglossia (Hary, 2003), meaning the language vari-
eties exist side by side, with writers or speakers shift-
ing between varieties according to circumstance. MSA
is written using the Arabic script, which is a right-to-left
alphabet. Arabic dialects are usually written in Arabic
script as well, but there is no standardized spelling for
dialectal Arabic (Habash et al., 2012).

Arabic uses both templatic and concatenative mor-
phemes. There are two types of templatic morphemes:
roots and templates. Roots are usually three consonan-
tal radicals that signify some abstract meaning. Roots
are inserted into abstract patterns called templates.

There are two kinds of concatenative morphemes
that attach to the templatic morphemes. Clitics are
morphemes that have the syntactic characteristics of
words, but are phonologically bound to another word
(Zitouni, 2014), for example “wa”,1 meaning “and”. Af-
fixes are phonologically and syntactically part of the
word, and often represent inflectional features, such as
person, gender, number, and more.

Dialectal Arabic (DA) is a primarily spoken family of
language varieties (and in modern days, widely used in
written form on social media as well) that exist along-
side the writtenMSA. DA diverges fromMSA on several
levels. There are differences in phonology, morphology,
lexicon, and orthography (Habash et al., 2012). The re-
gional dialects can be broken down into main groups,
with one possible breakdown being Egyptian, Levan-
tine, Gulf, Iraqi, and Maghrebi. Even within dialect
groups there can be quite a lot of variance between di-
alects, although in many cases there is a certain level
of intelligibility between speakers of different dialects,
with more significant difficulty across dialect groups.
Maghrebi dialects are influenced by the contact with
French and Berber languages, and the Western-most
varieties could be unintelligible by speakers from other
regions in the Middle East, especially in spoken form
(Zaidan and Callison-Burch, 2014).

1We use the Habash-Soudi-Buckwalter transliteration scheme
(Habash et al., 2007) for Arabic text. For AJA texts, we use the com-
mon transliteration of JA; see Table 9 in the appendix.

While JA can be looked at as an ensemble of Ara-
bic dialects, it is first and foremost a subgroup of Jew-
ish languages. Jewish languages are a family of lan-
guage varieties that developed in Jewish communities
throughout the diaspora. The original language used
by Jews in the Land of Israel was Hebrew, followed
closely by Aramaic. As Jews spread across the world,
they adopted local languages and developed distinctive
varieties of these languages. Nonetheless Hebrew re-
mained their liturgical language, even as it almost died
out as a spoken language until its revival in the late 19th
and early 20th centuries. Perhaps the most well-known
of these Jewish languages is Yiddish, the Judeo-German
language developed by Ashkenazi Jews living in Central
and Eastern Europe before the Holocaust. Jewish lan-
guages vary in their distance and divergence from their
non-Jewish sister languages, some being influenced by
multiple languages due to language contact. Nonethe-
less, among the features that tie these languages to-
gether are the presence of Hebrew and Aramaic lexical
components (Kahn and Rubin, 2017), the use of the He-
brew alphabet for writing, and more.

Algerian JA (AJA) is a member of the North African
Judeo-Arabic dialect group, i.e., dialects spoken and
written by Jews of the Maghreb. AJA is in contact with
Moroccan and Tunisian Arabic dialects (both Jewish
and Muslim), with French and to a lesser extent other
trade languages such as Spanish and Italian, and with
Hebrew and Aramaic, the historical Jewish cultural lan-
guages. In general AJA shares many characteristics
with other Jewish languages, including the use of He-
brew script, presence of Hebrew and Aramaic compo-
nents, and a mixture of conservative trends, vernacular
features, and heterogeneous elements (Tirosh-Becker,
2012). To date, AJA has been sparsely studied by lin-
guists. The AJA dialect of the city of Algiers was studied
over a century ago by Cohen (1912), withmost of the re-
cent work on AJA published by Tirosh-Becker, focusing
on Constantine, the third largest city in Algeria (Tirosh-
Becker, 1988, 1989, 2011a,b, 2014). AJA research em-
ploys fieldwork interviews of informants and the study
of selected written texts (e.g., Bar-Asher, 1992; Tedghi,
2012; Tirosh-Becker, 2011a,c, 2012). Regretfully, the
number of AJA speakers has decreased following Alge-
ria’s independence (in 1962) and the subsequent disper-
sion of its Jewish communities, making fieldwork today
almost impossible. Hence, this research is now shifting
towards an analysis of the vast textual sources left by
many of these Jewish communities, in both manuscript
and print form. Most of the linguistic analyses done
thus far on AJA texts have been based on single or few
texts, as each study requires extended effort of poring
over texts, dictionaries, and grammars. Given the size
of these corpora, this is a perfect match for machine
learning and NLP approaches.
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3 Related Work
3.1 Arabic Corpora
Corpora for Arabic NLP are usually gathered with a
specific language variety in mind, and optionally an-
notated with information for specific tasks. We briefly
discuss here the most prominent and relevant Arabic
corpora, and refer to Belinkov (2021) for a broader sur-
vey. Masader (Alyafeai et al., 2022; Altaher et al., 2022)
is an online catalogue of Arabic NLP datasets.

The majority of annotated Arabic corpora are for
MSA. The most prominent annotated MSA corpora
are the Penn Arabic Treebank (PATB; Maamouri et al.,
2004), and the Prague Arabic Dependency Treebank
(PADT; Hajič et al., 2009), a dependency treebank for
MSA. In addition, El-Haj and Koulali (2013) present
KALIMAT, a multipurpose corpus for MSA, with over
20,000 articles and over 18 million words, annotated us-
ing existing state-of-the-art Arabic NLP tools for POS
tags, morphological analyses, named entity recognition
(NER), and auto-summarization.

There are also annotated corpora for DA. ATB-ARZ
(Maamouri et al., 2014) is an Egyptian Arabic treebank,
with 182,965 tokens after clitic splitting. This corpus
is annotated for POS, morphology, gloss, and syntactic
treebank, following the guidelines of the PATB. There
are several corpora for dialect identification that in-
clude Algerian and other Maghrebi dialects, such as
Habibi (El-Haj, 2020), a corpus of Arabic song lyrics, or
QADI (Abdelali et al., 2021). Seddah et al. (2020) created
the NArabizi corpus, North African Arabic written in
Latin letters (commonly known as Arabizi), with 1500
sentences of annotated Algerian dialectal Arabic, with
tokenization, morphological analysis, code-switching
identification, syntactic annotations, and sentence-
level translations in French. MADAR (Bouamor et al.,
2018) has 12,000 sentences with parallel translations in
mutliple dialects, including Algerian and other North
African dialects, but without morphological annota-
tions. In addition, Zribi et al. (2015) transcribed and
annotated a spoken Tunisian Arabic corpus, a North
African dialect that is close to Algerian Arabic. It is
worth noting that many DA corpora are transcribed
from audio sources and are not originally textual data.

As for Judeo-Arabic corpora, the only publicly avail-
able JA corpus to date is the Friedberg Judeo-Arabic
Project,2 with almost 4 million words from 110 pre-
modern JA texts, including texts by Rav Saadia Gaon
and Maimonides. The only annotation available for
these words is language (Arabic, or Hebrew/Aramaic).
Recently, Tirosh-Becker and Becker (2022) developed
the TAJA (Tagged Algerian Judeo-Arabic) corpus, a lin-
guistically annotated corpus of written Algerian Judeo-
Arabic. This corpus is a collection of modern AJA texts

2https://fjms.genizah.org/

published in Algeria in the late 19th and the first half of
the 20th century. Section 4 provides a detailed descrip-
tion of the TAJA corpus, on which this paper is based.

3.2 Arabic POSTagging andMorpholog-
ical Analysis

Much of the work done on POS tagging in Arabic has
used statistical methods. Diab (2009) uses an SVM
classifier for choosing POS tags on MSA. MADAMIRA
(Pasha et al., 2014), trained on the MSA PATB, is of-
ten used as a benchmark for Arabic POS tagging. It
uses a morphological analysis component as part of
the preprocessing stage, and then uses SVM and lan-
guage models to predict POS tags, as well as tokeniza-
tion, NER, and other tasks. Farasa is another Arabic
NLP tool with support for POS tagging in MSA and DA,
which is based on conditional random fields (Abdelali
et al., 2016; Darwish et al., 2018). In recent work, deep
neural networks have been used to train POS and mor-
phological taggers. Plank et al. (2016) built POS tag-
gers for 22 languages, including Arabic, using data from
the Universal Dependencies project (Nivre et al., 2015).
They experiment with using word embeddings, charac-
ter embeddings, byte embeddings, and some combina-
tions thereof. Their best performing model does espe-
cially well on Arabic, reaching up to 98.91% accuracy.

Works that cover DA often leverage tools developed
on or for MSA. Duh and Kirchhoff (2005) propose a
minimally supervised approach for POS tagging of DA
that combines raw text data from several varieties of
Arabic, and a morphological analyzer for MSA with no
other dialect-specific tools. Habash et al. (2013) tweak
the MSA morphological analyzer MADA (Roth et al.,
2008) for analyzing Egyptian DA, rather than the orig-
inal MSA. They achieve up to 84.5% accuracy on mor-
phological tags and 90.1% on Penn POS tags.

Other studies that address both MSA and DA have
used bi-LSTMs for morphological tagging, sometimes
jointly with other tasks like diacritization (Zalmout and
Habash, 2020, 2019). Very recently, Inoue et al. (2022)
have shown benefits from using pre-trained Trans-
former language models, especially when transferring
from high- to low-resource dialects or language vari-
eties, outperforming previous approaches.

Darwish et al. (2020) introduce a robust multi-
dialect POS tagging system trained on tweets from
four different dialect groups. They implement two ap-
proaches: the first uses CRFs, and the second stacks
layers of CNNs, recurrent neural networks (RNNs), and
a CRF layer. Their dataset comprises hundreds of
tweets in each dialect group, each manually segmented
into tokens and clitics. They make use of stem tem-
plates and Brown clusters as features concatenated to
the embeddings for classification, and achieve accuracy
of up to 92.4% on the POS tagging of seen words and
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source text reference line number context word
לסקיפ'א תשבאה האדי אדנייא אדנייא

Gn_avot_4:16 2
ʾdnyyʾ hʾdy tšbʾh lsqyfʾ ʾdnyyʾ

lemma/root POS morphological analysis 1 morphological analysis 2
דנייא
dnyyʾ

noun feminine signular

additional tags enclitic pronoun comments orthography and pronunciation
1. yy denotes consonantal ya’

NA NA
2. Phonetic transcription of the definite article

Table 1: The general structure of a word-record in the TAJA corpus with a specific example. The words and context are
stored in the word-record in their original Hebrew script; transliterations are added here for clarity.

82.9% on unseen words in Maghrebi dialects.
Given the orthographic, grammatical, and lexical

differences between JA on the one side and MSA and
other Arabic dialects on the other side, it is not straight-
forward to apply tools developed for MSA and Arabic-
script DA to processing JA. Future workmay investigate
ways to transfer such tools or incorporate them with
JA-dedicated tools. Efforts to transliterate JA texts to
Arabic script (Terner et al., 2020) may assists in pursu-
ing this direction.

3.3 Code-Switching
While there is no work known to us applying NLP to JA,
there is work on code-switching, which is a significant
characteristic of JA, as we noted in Section 2. Code-
switching is when a speaker alternates between two or
more languages or dialects in the context of a single
conversation or situation. Ahmed (2018) annotates He-
brew elements in JA, capturing cases of code-switching,
borrowing, and Hebrew quotations, and investigating
sociolinguistic aspects in medieval JA texts. Wagner
and Connolly (2018) perform a quantitative analysis of
code-switching in JA texts from the Cairo Geniza.

As Çetinoğlu et al. (2016) point out, POS tagging of
code-switched data is much harder than taggingmono-
lingual texts, as models could reach 97% accuracy for
the latter, but as low as 77% for the former. Attia et al.
(2019) find that POS tags provide a strong signal for
identifying code-switching. Just as code-switching is a
major characteristic of AJA, it also characterizes other
varieties of Algerian Arabic, and poses a challenge to
Arabic NLP research (Riabi et al., 2021).

4 Data
This project has used the Tagged Algerian Judeo-Arabic
(TAJA) corpus developed by Tirosh-Becker and Becker
(2022).3 This AJA corpus is a collection of modern AJA
texts published in Algeria in the late 19th and the first
half of the 20th century. The texts represent a variety
of prose genres written by Algerian Jews, including:

3The corpus is available through the authors.

• Bible translations, known as šarḥ (sg.) or šurūḥ
(pl.).

• Translations of Hebrew post-biblical texts (such
as the Mishnah, the Passover Haggadah, and
liturgical poems).

• Translations of other Hebrew texts (such as Mai-
monides’ Mishne Torah).

• Original writings composed in AJA, including
commentaries and writings about Jewish law.

• Journalistic writings in AJA.

These texts were manually typed into computer-
readable format and subsequently proofread, as He-
brew OCR (Optical Character Recognition) failed on
these AJA texts. This was due not only to the less-than-
favorable conditions under which the books had been
stored, leaving the pages grayed and worn, but also be-
cause the fonts used in these books are not identical to
standard Hebrew, as they have JA-specific adaptations,
such as diacritics. Each text was manually tokenized
and annotated by research assistants (RAs, usually MA
or PhD candidates) in a spreadsheet, according to strict
guidelines, and most were verified by a senior expert.

The digitization and annotation project spanned
several years, with some dozen RAs contributing to
the annotation efforts. Approximately 80% of the time
spent on the creation of TAJA was dedicated to the an-
notation process, as the digitization is a more straight-
forward (though non-trivial) task.

4.1 Data Annotation

The TAJA corpus was created to be a linguistically
annotated digital corpus of genre-diverse written texts
(Tirosh-Becker and Becker, 2022). The basic elements in
this digital corpus are the individual words. Generally
speaking, the texts are split on white-spaces, though
there are some multi-word expressions that are anno-
tated as a single unit. Each word is stored in a sort of
word-record, which places the word in its sentence-level
context (as well as a reference to the full text), and pro-
vides linguistic information about its grammatical com-
ponents and more (Table 1).

Northern European Journal of Language Technology



4.1.1 Parts of Speech (POS)

Each word is tagged with a unique POS tag. The tags
are drawn from a closed list of the following POS: noun,
verb, particle, proper noun, relative pronoun, adjective,
number, personal pronoun, demonstrative, adverb, pre-
sentative, quantifier, and acronym. POS tagging was
also applied to the embedded Hebrew, Aramaic, and
French words, which are identified in the TAJA corpus
by code-switching tags, as these embedded words are
interwoven into the syntactic fabric of JA. In almost all
cases these code-switching words were nouns. See Ta-
ble 10 (Appendix) for a list of valid POS tags.

4.1.2 Morphological Tags

Themorphology of each word was fully analyzed by ex-
pert JA linguists. Each POS tag calls for its own set of
morphological features. Given a noun, for example, we
expect information about gender, number, and code-
switching. The fields in our dataset in which we find
this morphological information are analysis1, analysis2,
additional tags and enclitic pronouns. Note that there
is a clear ranking between these fields. Most of the
morphological information is captured by the first two
fields, analysis1 and analysis2, reflecting the rich mor-
phology of AJA, while the additional tags field refers to
a small subset of morphological attributes that apply
only to a limited number of POS tags, i.e., to verbs (com-
binations of person, gender, and number) or to demon-
stratives (proximal vs. distal). The information pro-
vided by the enclitic pronouns field is morphologically
more restricted. Each POS tag generally has its own
set of legal values for these analyses, and they do not
often overlap with the legal morphological annotations
of other POS tags. In fact, at times, the same linguistic
information may appear in different annotation fields
for different POS tags. For example, code-switching in-
formation for nouns appears in the analysis1 field, but
the same information for proper nouns appears in anal-
ysis2. See Tables 11–14 (Appendix) for lists of valid mor-
phological tags for the prominent POS tags.

4.2 Corpus Statistics
TAJA is comprised of 69 spreadsheet files, which cover
16 printed texts. These include 9904 AJA sentences,
with a total of 61,481 tokens. There are 17,876 dif-
ferent word types in the corpus, for a type–token ra-
tio (TTR) of 0.2907. It is important to recall that AJA
is a highly morphological language, with extensive use
of affixes and clitics. For example, a word is marked as
definite using the prefix ʾl- . The same is true for several
prepositions, such as b- (“in” or “at”) or l- (“to” or “for”).
Thus, a single lemma with two different prefixes will
be counted as two distinct word types, so the reported
number of word types in fact represents fewer lemmas.

Tokens Types

Surface 20.89% 37.37%
Lemmas 5.34% 16.88%

Table 2: Out-of-vocabulary percentages for tokens and
types, by surface level words and for lemmas.

Figure 1: Part-of-speech tag distribution for the TAJA
corpus.

As for the use of the term “lemma”, the verbs in TAJA
are tagged for the root rather than their lemma. In ad-
dition, approximately 2.1% of words in TAJA are miss-
ing the annotation in the lemma field, and are therefore
left out of statistical calculations we report below at the
level of lemmas. These issues limit our ability to provide
accurate statistics on a lemma level.

For the 90/10 training/test split of TAJA with which
we work in our experiments, we see high out of vocab-
ulary (OOV) percentages for surface-level words (Ta-
ble 2). When looking at word types, we see that more
than a third of surface-level word types in the test set
did not appear in the training set. Recall that this in-
cludes words that appear in the training set with an
affix (such as a determiner, for example), and appear in
the test set without said affix (or vice versa). We also
look at the lemma OOV percentage, despite what we
explained above about verbs being annotated for root
instead of lemma. There is a large portion of OOV
lemma types in the test set. These characteristics illus-
trate the diversity of the data in both lexical and surface
form levels.

Finally, the data suffer from a long-tailed distribu-
tion of the annotations, a common problem in NLP.
When examining the distribution of POS tags, for ex-
ample, the three most common POS tags (noun, verb,
and particle) account for approximately 80% of the an-
notations (see Figure 1), while the other 11 valid POS
tags comprise only a fifth of the annotations.
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4.3 Corpus Ambiguity
Before we discuss the ambiguity statistics of the TAJA
corpus, we must address the noisiness of the data.
Despite the laborious annotation effort (Tirosh-Becker
and Becker, 2022), the data still contain problematic an-
notations. We discuss our attempts to clean the data
below, but at this point, it is enough to know that some
annotations appear with typos, or with additions that
should not be there, such as question marks.

Corpus ambiguity is defined in Dermatas and
Kokkinakis (1995) as the mean number of possible tags
for each word of the corpus. This number can provide
a signal for the difficulty of the tagging task. The cor-
pus ambiguity of TAJA, calculated on the surface-level
tokens, is 1.7497. This is high relative to the corpus am-
biguity of other language corpora, as reported in Der-
matas and Kokkinakis (1995), which range from 1.11
(for Dutch) to 1.69 (for French). However, as we men-
tioned, the noise in the annotations makes this number
unreliable. For example, if a word that appears many
times in the corpus appears one time with a typo in the
annotation, this will raise the corpus ambiguity unjus-
tifiably.

4.4 End-Goal: The Unannotated NAJA
Corpus

In addition to TAJA, there exists a larger unannotated
corpus of digitized AJA text. The New Algerian Judeo-
Arabic (NAJA) corpus includes the same genres as TAJA,
though differently distributed. The estimated size of
NAJA is between 170k-186k tokens, almost three times
as many as TAJA. It is the laborious task of manually
annotating this corpus that we wish to automate away,
using taggers trained on TAJA.

5 Preprocessing
In this section, we describe several challenges we faced
in the preprocessing stage and the steps we took to ad-
dress them.

5.1 Invalid annotations
Although the annotators were provided with the list
of legal tags and legal morphological annotations, the
data are rife with ‘illegal’ values, including mistyped
tags (e.g., צל instead of 4,(מל two tags combined into
one מל+שע) rather than ,(שע annotations with question
marks and slashes (indicating that they are not confi-
dent about the tag they chose) and most often, words
that are simply missing a tag.

4This mistyping is caused by the letter צ (ṣ) being adjacent to the
letter מ (m) on the Hebrew keyboard. Table 10 (Appendix) provides
the list of POS codes and their meanings.

We took a semi-automated approach for correcting
as many annotations as possible. We created a map-
ping from misspelled or mistyped tags to the correct
spelling. This was an iterative process, as at each iter-
ation new categories of errors emerged, requiring ad-
ditional consultation with JA language experts. For ex-
ample, when resolving combined tags (as we described
above), it is not obvious that it is desirable to drop the
information represented by either of the tags. Being
able to automate away the correct or obvious cases, en-
abled us to narrow down the number of questions we
needed to bring to the experts, and conversely, having
a language expert to whom we could bring the difficult
questions, allowed us to ensure the annotations are as
accurate as possible. Upon loading the spreadsheets
and ingesting the data, we automatically convert any
incorrect tags that appear in our mappings to the cor-
rect tags. These mappings catch 662 errors that are au-
tomatically corrected as part of the preprocessing stage.
Using regular expressions we collected the cases of low
confidence annotations (indicated by question marks
or slashes in the original spreadsheets), and sent them
for review by the language experts. Most of these were
corrected manually in the original spreadsheets, in ad-
dition to some errors found in the enclitic pronouns, for
a total of 64 manual corrections. Finally, missing anno-
tations are represented with an underscore.

5.2 Column offsets

Another kind of noise we encountered in the annotated
data are column offsets (e.g., the POS tag appears in
the analysis1 column, and so on). During preprocessing,
we check automatically for such offsets in the columns,
and automatically realign the annotations to their cor-
rect fields while parsing. We found 64 such cases, and
fixed them automatically.

5.3 Multi-word expressions

The spreadsheet input includes the tokenization of each
sentence, listing each token on a separate line, where
each sentence is separated from the next by an empty
line. In most cases, the tokenization is done on white-
spaces. However, on various occasions, a multi-word
expression appears on a single line and is annotated as
a single unit. This happensmost commonlywith proper
nouns, such as השנה ראש (rʾš hšnh, ‘the New Year’; this
is also a Hebrew construct phrase) or נון ולד יהושע (yh-
wšʿ wld nwn, ‘Joshua son of Nun’), or Hebrew phrases
such as the phrase הזה בעולם (bʿwlm hzh, ‘in this world’;
includes a noun) or טוב ועשה (wʿsh ṭwv, ‘and do good’; in-
cludes a verb). These multi-word expressions are most
often Hebrew phrases or terms that are embedded in
the AJA text. They are treated as a single word in TAJA,
because they represent a single concept or entity. How-
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ever, this potentially poses a problem, as the tokeniza-
tion we perform on new texts is based on white-spaces
and punctuation, and therefore when coming to anno-
tate previously unseen texts with multi-word expres-
sions, the tagger will address each component of the
phrase as its own word, and it might be considered ‘out
of vocabulary’ as far as our tagger is concerned. How-
ever, this is a very rare phenomenon, with fewer than
100 appearances in the entire corpus, and therefore we
did not split multi-word phrases in our experiments.

6 Methods

6.1 The Tasks
We formulate both part-of-speech (POS) and morpho-
logical tagging as sequence labeling tasks. In the POS
tagging task, we are given an input sentence of𝑛 words,
denoted by x = 𝑤1, . . . ,𝑤𝑛 , and need to find the correct
sequence of tags t = 𝑡1, . . . , 𝑡𝑛 , where 𝑡𝑖 is taken from
the set of POS tags 𝑇 (Table 10, Appendix). Morpho-
logical tagging is performed on the same input as the
POS tagging task. In this task, there are four morpho-
logical fields (analysis1, analysis2, additional tags, en-
clitic pronoun) to be tagged in addition to the POS tag
field: t1 = 𝑡11 , . . . , 𝑡

1
𝑛 , t

2 = 𝑡21 , . . . , 𝑡
2
𝑛 , t

3 = 𝑡31 , . . . , 𝑡
3
𝑛 ,

t4 = 𝑡41 , . . . , 𝑡
4
𝑛 . Tables 11–14 (Appendix) contain lists of

valid morphological tags for the prominent POS tags.

6.2 Models
We experiment with two types of models for the se-
quence labeling tasks: CRFs and RNNs. CRFs (Laf-
ferty et al., 2001) are a framework for building prob-
abilistic models for segmenting and labeling sequence
data, while relaxing strong independence assumptions
made by hidden Markov models (HMMs), and avoid-
ing certain biases that maximum entropyMarkov mod-
els (MEMMs) are prone to have. Parameter estima-
tion is done by maximum likelihood estimation and the
Viterbi algorithm is used for inference. CRFs use hand-
crafted features, such as the preceding and succeeding
words, prefixes and suffixes, and more. In this study
we experiment with MarMoT, an off-the-shelf tool that
implements a pruned CRF model which has performed
well on Modern Standard Arabic (Müller et al., 2013).

In addition to the standard MarMoT tool, we imple-
ment our own tagging model based on long short-term
memory networks (LSTM; Hochreiter and Schmidhu-
ber, 1997), a type of RNN that is more robust to
the vanishing gradients problem and performs well on
sequence-level tasks. Our backbone is a bi-directional
LSTM model based on the PyTorch implementation
(Paszke et al., 2019). On top of that, we add a linear
layer that maps the hidden representations to the out-
put space: either the space of all POS tags or the space

of each of the morphological tag classes. Below we de-
scribe several improvements to this basic architecture.

6.3 Word-based vs. Character-based

Our basic LSTM architecture receives a sentence as in-
put, and, using an embedding matrix for the words,
passes the word embedding vectors 𝑥1 . . . 𝑥𝑛 through
the LSTM one after another. However, this method has
no way to deal with out-of-vocabulary (OOV) words,
which are all mapped to a single ‘UNKNOWN’ token,
and therefore to the same word embedding. It must use
contextual information alone from neighboring words.
OOV words are especially common in morphologically
rich languages like AJA, as is evident from the corpus
statistics (Section 4.2). To account for the highly mor-
phological nature of AJA, it is important to address the
characters on an individual level, as has been shown for
other languages (Dos Santos and Zadrozny, 2014; Ling
et al., 2015; Ballesteros et al., 2015). Looking at char-
acters separately from words helps tag OOV words,
because we can identify certain affixes that provide a
strong signal about one of the annotations. For exam-
ple, words starting with אל (ʾl), א (ʾ), or ל (l)5 are more
likely to be nouns.

For this purpose, we created two character-aware
models. Both models train embeddings for the charac-
ters, but use different methods to create a word repre-
sentation given the character embeddings.6 Let the 𝑘𝑡ℎ

word of sentence x be 𝑤𝑘 = 𝑐𝑘,1, 𝑐𝑘,2, . . . , 𝑐𝑘,𝑚 (for ease
of notation, 𝑐𝑘,𝑖 represents both characters and charac-
ter embeddings). The first method builds on the idea
proposed by (Luong and Manning, 2016), and passes
each word𝑤𝑘 ’s characters through an inner character-
LSTM. The final hidden state ℎ𝑘,𝑚 of the character-
LSTM is a character-aware word representation, which
is concatenated to that word’s embedding 𝑥𝑘 . The com-
bined representation 𝑥𝑘 = (𝑥𝑘 , ℎ𝑘,𝑚) is fed to the word-
level LSTM. We call this model chaR-lstm.

The second method follows (Kim et al., 2016), and
uses a one-dimensional convolutional neural network
(CNN), with a hyperparametric number of kernels 𝐾
that convolve with thematrix of eachword𝑤𝑘 ’s charac-
ter embeddings. We apply a tanh non-linearity to the
convolution outputs, and then pool the maximal values
of each output to create a single character-based repre-
sentation for each word, ℎ𝑘 . This representation is con-
catenated to the word’s embedding. The combined rep-
resentation 𝑥𝑘 = (𝑥𝑘 , ℎ𝑘 ) is fed to the word-level LSTM.
We call this model cnn.

5All these forms are related to the determiner אל (ʾl).
6One could use pre-trained word or character embeddings, but

given the relatively small size of our corpus, we do not expect this to
yield substantial improvements.
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6.4 Flat vs. Hierarchical vs. Multitask
Learning

Our basic experimental setup is to train tagging models
for each field alone, resulting in five separate models
(one for POS tagging and four for the morphological
fields). We consider this ‘flat’ tagging a sort of baseline,
as we hypothesize that including information from one
field can improve results when predicting another.

The next setting we explore is a hierarchical model,
utilizing a simple two-tier hierarchy with POS tags at
the base and morphological tags building on that. This
is anchored in the tag distribution. As mentioned in
Section 4.1.2, most POS tags have their own set of legal
morphological analyses in each field that are not shared
with other POS tags. Thus, given the POS tag for a
given word, the size of the possible pool of tags in each
morphological field significantly decreases. Let 𝑥𝑘 be
the word representation of word𝑤𝑘 including character
information, as discussed above. In this setup, we also
train five separate models, but while the POS model is
identical to the base model architecture, the four mor-
phological models concatenate POS tag information to
the word representations, in the form of a one-hot vec-
tor 𝑒𝑡𝑘 ∈ {0, 1}𝑑 (where 𝑡𝑘 is the index of the POS of𝑤𝑘 ,
for some ordering of all the POS tags, and 𝑑 is the size
of the POS tag set). The concatenated vector (𝑥𝑘 , 𝑒𝑡𝑘 )
is then fed to the word-level LSTM. During training, we
provide the ground truth POS tag. At inference, we use
POS tags predicted by the POS tagging model.7

Finally, a natural approach to take when tackling
several tasks that are related to one another is multi-
task learning (MTL; Caruana, 1997), which has previous
been considered for MSA morphological tagging (In-
oue et al., 2017). In this setup, we share all parameters
(word and character embeddings, and hidden states)
between the different tasks, except for the final linear
layer that receives the hidden states as input, and re-
turns the scores for the relevant tag space. We have
one layer of this kind for each task, each with its own
parameters. We average the losses of each task, and
backpropogate based on the averaged loss.

7 Experiments

7.1 POS Experiments

We begin our experimentation with addressing the POS
tagging task alone, in order to determine the best archi-
tecture for our base model on a simpler task before div-
ing into the more complicated morphology task. Our
initial experiments are run with a base configuration

7We use this setup for simplicity and do not consider curriculum
learning strategies that sample targets both from the ground truth
and from the model’s predictions (Zhang et al., 2019).

of hyperparameters loosely based on prior work (Kim
et al., 2016) and general intuition. Then we conduct a
hyperparameter search for the best configuration. The
exact settings are provided in Appendix B.

We run all our experiments by training on 90% of
the tagged data, of which we hold out 10% for early
stopping of the NN model training, and testing on the
remaining 10%. All results of the neural-network-based
models are averaged over five runs using five different
seeds, unless noted otherwise. We compare the vari-
ous model results to a ‘most-frequent baseline’ assign-
ment, in which we assign a word the POS with which it
appears most often in the training data, and assign all
OOV words the most common POS tag (noun).

Table 3 summarizes the results of the various POS
tagging models. The most frequent tag baseline is quite
strong, as common in POS tagging tasks. In fact, it out-
performs the woRd-lstm model. Using character infor-
mation is beneficial, and the chaR-cnn model is better
able to do so than the chaR-lstm model. Among the
neural network models, it performs best. The best per-
forming tagger overall is the CRF-based MarMoT tool.

Model Accuracy [%]

most frequent baseline 82.01
woRd-lstm 78.08±1.10
chaR-lstm 84.42±0.80
chaR-cnn 87.45±0.58
MarMoT 89.17

Table 3: Accuracy of the POS taggingmodels. Best scor-
ing model appears in bold.

7.2 Interim Summary

We saw in our experiments above that, among our
neural-network (NN) approaches, representing a word
by a CNN on its characters performs better than an
LSTM, or ignoring the characters altogether. We use
this chaR-cnn model for hyperparameter tuning (see
Appendix B). However, we also saw that MarMoT is in-
deed a very strong tool, and outperforms the chaR-cnn
in this task. Therefore, we move forward to the mor-
phological tagging using both models, the chaR-cnn
representing the NN family, and MarMoT as a strong
off-the-shelf tool.

7.3 Morphology Experiments

As we just discussed, of the three neural network archi-
tectures, the chaR-cnn model performs best, and there-
fore we choose this architecture as our base model as
we move forward with the morphology experiments,
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morphology

Model analysis1 analysis2 additional tags enclitic

most frequent baseline 72.89 76.71 87.16 94.47
chaR-cnn
flat 80.18±0.47 84.02±0.53 90.59±0.08 95.72±0.10
hierarchical (pred POS) 79.56±0.32 83.69±0.76 90.05±0.53 95.87±0.14
hierarchical (true POS) 88.35±0.39 92.34±0.19 94.81±0.11 96.30±0.21
MTL 78.15±0.78 83.57±0.52 89.75±0.26 94.96±0.28

MarMoT 82.32 85.55 91.69 96.38

Table 4: Morphological models results by field. Best scoring results are in bold.

using the same base configuration of hyperparame-
ters that we used in the POS experiments. We exper-
iment with three approaches for predicting morpho-
logical tags (Section 6.4): the flat approach trains one
model per each morphological attribute, the hierarchi-
cal approach uses POS information when predicting
morphology, and the multitask approach predicts all
morphological attributes jointly in a multitask manner.
The hierarchical model was tested in two different set-
ups, using either the predicted POS tag or the true POS
tag in order to predict the morphological tags.

Providing true POS tags is a realistic choice for a
linguistic annotation pipeline, since POS annotation
is much simpler than morphological annotation. One
may envision a human-in-the-loop process, where hu-
mans correct initial automatically assigned POS tags,
and then a morphological tagger relies on the human-
corrected tags. We return to this point in the discussion
(Section 9).

7.3.1 Field by Field Accuracy

Table 4 shows the morphological tagging results broken
down by field. The comparison highlights that our ‘hi-
erarchical chaR-cnn model’, when based on true POS,
outperformed MarMoT in the first three morphology
analysis fields. Themodel’s success ranged from almost
89% for the analysis1 field, almost 93% for analysis2 and
almost 95% for additional tags. This was judged as very
significant by our JA experts. Due to its morphological
complexity, manually tagging these morphology fields
is highly time consuming even for experienced linguists.
Enclitic pronouns, which are morphologically more re-
stricted, are successfully predicted bymostmodels with
an accuracy greater than 95%.

7.3.2 Overall Accuracy

We also present several alternative overall scores for
each of the taggers (Table 5). The ‘strict’ score consid-
ers a word to be correctly tagged only if all five fields
are correctly tagged. This score was judged by the JA

Model strict flexible weighted

most freq 66.94 82.64 80.76
chaR-cnn
flat 66.71±0.34 87.58±0.07 86.32±0.08
hierarchical 70.91±0.67 87.35±0.35 86.12±0.40
(pred POS)
hierarchical 71.18±0.52 91.95±0.13 90.71±0.15
(true POS)
MTL 66.24±0.97 86.84±0.30 85.72±0.30

MarMoT 75.84 89.02 87.92

Table 5: Overall accuracy scores for the morphologi-
cal models. The strict, flexible, and weighted (3,2,2,1,1)
scores are defined in the text.

linguists as too severe, as they see real-world useful-
ness even if not all of the analysis fields were correctly
tagged. The ‘flexible’ score counts each correct tag sep-
arately and gives equal weight to each field. Finally,
reflecting the importance that our JA experts assigned
to each field, a ‘weighted’ score was calculated as well,
where the vector (3, 2, 2, 1, 1), for example, empha-
sizes POS over analysis1 and analysis2, and gives the
lowest weight to the additional tags and the enclitic
pronouns. The comparison shows that our hierarchi-
cal chaR-cnn (true POS) model performs better than
MarMoT by 2.2% and 2.8% when calculating the ‘flexi-
ble’ score and the ‘weighted’ score, respectively, while
MarMoT excels by the ‘strict’ metric.

7.3.3 Accuracy forwordswith legal tag combina-
tions

Another way to evaluate our results is to look for all the
words for which we know the tagger went wrong some-
how. Recall that each POS has a certain set of legal val-
ues in each morphological analysis field, which differs
from POS to POS (some of which can be seen in Tables
11–14 (Appendix). As our taggers are given the entire
tagset, regardless of each specific word’s POS, theymay
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legal tag combo illegal tag combo illegal tag combo
Model accuracy [%] average no. words percent [%]

chaR-cnn
flat 92.40±0.15 1652.0±44.9 26.95±0.73
hierarchical (pred POS) 88.56±0.20 1082.2±81.5 17.65±1.32
hierarchical (true POS) 95.18±0.25 1070.4±57.6 17.46±0.94
MTL 89.92±0.27 1379.0±44.6 22.49±0.73

MarMoT 89.49 1003.0 16.36

Table 6: ‘Flexible’ model accuracy for words with legal tag combinations, after removing words flagged as illegal combi-
nations of POS tag and morphological analyses, and the average number of illegally tagged words and their percentage
of the test set.

morphology

Model POS analysis1 analysis2 additional tags enclitic

chaR-cnn
flat 72.63±0.52 59.64±0.99 61.06±1.28 73.80±0.61 88.40±0.43
hier. (pred) 72.58±0.46 57.72±0.81 59.64±1.39 72.26±1.85 89.01±0.68
hier. (true) 73.96±0.61 74.91±0.54 78.42±1.09 85.39±0.33 90.87±0.49
MTL 72.86±1.03 55.33±1.60 58.59±1.53 70.98±1.25 87.20±0.70

MarMoT 71.35 55.82 59.95 75.02 89.23

Table 7: Accuracy of morphology tagging for Out of Vocabulary (OOV) words.

produce illegal tag combinations if one of the predicted
morphological tags does not appear in the legal values
of the word’s predicted POS tag (or, in the case of the
true-POS-based hierarchical model, the true POS). In
Table 6, we show the ‘flexible’ accuracy for each model
on all the words that have legal tag combinations. Note
that the accuracy of the true-POS hierarchical model
for suchwords is almost 4% higher than its performance
on the entire test set.

The table also shows the number of words that were
tagged with illegal tag combinations and their percent-
age in the test set. Several observations can be made
on the basis of this analysis. First, the models with the
highest percentage of illegally tagged words are the flat
chaR-cnn and the multitask model. While the reported
percentage of illegally tagged words for the true-POS-
based hierarchical model (17%) is slightly higher than
that of MarMoT, it is within a standard deviation of
the percentage of words flagged in the MarMoT run.
Coupled with the significant improvement in the ‘flex-
ible’ score over MarMoT, which hardly improves over
its general accuracy, this is a strong indication of the
benefits of the true-POS-based hierarchical model.

We concede that 17% of all words is too many to
expect a JA expert to address when using an automatic
system for tagging new and unannotated data; how-
ever, these findings could potentially be used in other
ways as well, such as adding a step in the automatic
tagging process that forces the tagger to select a le-

gal combination of POS tag and morphological anal-
yses, using some heuristic to determine which of the
predicted annotations to follow. This being said, as
we mentioned in Section 4.3, the annotations in TAJA
are noisy, and as such, 12% of the words in the anno-
tated corpus appear with invalid analyses (mostly miss-
ing analyses, some illegal combinations) to begin with.

7.3.4 Out of Vocabulary Accuracy

Another way to evaluate how useful each model is in a
real-world setting is through the accuracy of morphol-
ogy tagging ofOut of Vocabulary (OOV)words (Table 7)
– words in the test set that did not occur in the train-
ing set. OOV words accounted for 21% of the TAJA test
set (1281 of 6131 words). This high percentage of OOV
words is reflective of the corpus’ characteristics as dis-
cussed in Section 4.2. The results of this analysis are
remarkable, with the hierarchical chaR-cnn (true POS)
significantly outperforming all other models across the
different morphological analysis fields by 19% for anal-
ysis1 and analysis2 and by 10% for additional tags. This
is a significant and encouraging finding, because it is
very likely that the percentage of OOV words will in-
crease in the future when we apply these tools to new
texts beyond the TAJA corpus, especially if these texts
are of different literary genres. Despite performing well
in some of the previous evaluations, MarMoT failed on
the morphology analysis of OOV words. A related ob-
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servation is that even the hierarchical chaR-cnn (pre-
dicted POS) model was able to assign POS tags to OOV
words slightly better than MarMoT, achieving an accu-
racy of 72.58% vs. MarMoT’s 71.35%.

8 Real-World Evaluation
The end goal of this project is to provide AJA language
experts with an automatic tagger to help them anno-
tate large volumes of text, a task which is otherwise la-
borious and time-consuming when tackled manually.
To evaluate such real-world usefulness of the taggers
we set out to compare the performance of our two best
POS models (the hierarchical chaR-cnn based model
and MarMoT) with that of manual annotation by two
expert AJA linguists.

8.1 The Task
For this evaluation task we selected a subset of the
above-mentioned NAJA corpus, encompassing 30 chap-
ters from the AJA translation of Psalms that were never
annotated (a total of 3817 words). The two models
were first trained on the entire TAJA corpus, and then
we used the models to tag these selected unannotated
texts. The resulting POS predictions were then given
to two AJA experts of different calibers (see below), to
evaluate and score. The two experts were instructed
to write corrections only if one or both of the models
were wrong, and to leave the annotation blank if both
were correct. This enabled us not only to evaluate the
performance of our competing models, but also assess
inter-annotator agreement (IAA).

8.2 Inter-Annotator Agreement
It should be noted that the two human annotators that
performed this task were of different expertise levels.
One annotator is a senior professor of Judeo-Arabic,
with decades of experience annotating and analyzing
Judeo-Arabic texts. The second annotator is a doctoral
student, a research assistant who has worked for sev-
eral years under that professor’s tutelage. Therefore,
we consider the annotations of the senior expert to be
the gold-standard, whereas the annotation of the junior
expert is considered to be a silver-standard.

We calculate Cohen’s Kappa between the annota-
tions of the senior expert and those provided by the ju-
nior expert, excluding all the words on which the mod-
els disagreed but one of the human annotators did not
identify the correct tag. We are left with 3685 words,
for which 𝜅 = 0.875.

Note, however, that while Cohen’s Kappa is a sym-
metric score, our two human annotators are of different
calibers. Hence we take the senior expert’s annotation

as the correct result (gold-standard), and measure the
accuracy of the junior expert’s annotation relative to
that of the senior expert. This will later be compared to
the accuracy of the automatic taggers. Calculated on
the same 3685 words stated above, the junior expert’s
accuracy in the wild was 0.908.

8.3 POS Tagger Evaluation
The accuracy statistics for the two POS taggers was
evaluated relative to the corrections of the senior ex-
pert, whose annotations are considered to be the cor-
rect ones. Despite the instruction to correct all cases
where at least one of the taggers was mistaken, there
were 32 cases (0.8%) where the two models disagreed,
but no correction was provided. On the remaining 3785
words, the accuracy of the two models was almost the
same and only slightly lower than the accuracy of the
human junior expert (Table 8). The real-world useful-
ness of the automatic taggers is highlighted when tak-
ing into account that it took the junior expert approxi-
mately 5.5 hours to complete this relatively limited task.

MarMoT chaR-cnn junior expert

88.85 88.92 90.80

Table 8: POS tagging accuracy, on Psalms 1-30, relative
to the correct tagging by the senior expert.

These results can be interpreted in several ways. A
favorable way to look at this is that the automatic mod-
els are almost as good as a medium-level human anno-
tator, and are therefore invaluable to the effort of an-
notating large amounts of text. A less favorable view is
that a less experienced human annotator is more sus-
ceptible to agree with subtle mistakes made by an au-
tomatic tagger, though they might provide the correct
annotation when facing a blank page. The easiest way
to confirm or reject the hypothesis that the RA is more
susceptible to being led astray by the automatic anno-
tations is to compare his accuracy on this Psalms file
to a similar number of annotations he made on a com-
pletely unannotated file. Unfortunately, that break-
down is not available. However, in support of this hy-
pothesis, we break down the mistakes made by the ju-
nior expert by whether or not the models agreed on the
annotation. We see that over 75% of the junior expert’s
mistakes were in cases where the models agreed, and of
those cases, over 70% are words where the junior expert
agreed with the automatic taggers, whereas the senior
expert chose a different tag. In light of these numbers,
it is important to emphasize to human annotators who
use the automatically generated tags that they must
look at the tags with a critical eye, and not assume that
the taggers “know” the truth.
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As is apparent from the results, there is almost no
difference in accuracy between the two models, despite
the fact that the models disagree on 11.2% of annota-
tions. The number of mistakes made by each of the
models is almost equal, with MarMoT being correct on
179words and chaR-cnn on 182words out of 429words
on which the models disagree, and an additional 35
words on which both models were wrong. An inter-
esting direction for future research is to characterize
the kinds of mistakes each model tends to make, and
explore ways to combine their strengths. Furthermore,
we note that in this real-world application to NAJA (i.e.,
texts that are not part of TAJA) the chaR-cnnmodel per-
formed a little better than its initial TAJA-based evalua-
tion (88.92% vs. 87.45%, see Table 3) while the MarMoT
model performed a little worse (88.85% vs. 89.17%).

9 Discussion and Conclusion

The pressing real-world challenge facing researchers of
Algerian Judeo Arabic (AJA) dialects is how to scale up
their linguistic analyses from individual texts to large
textual collections. The rich morphology of Arabic (as
of other Semitic languages) and scarcity of expert lin-
guists makes this complex and time-consuming task
impractical unless aided by automation. Hence, de-
veloping automatic taggers that would support real-
world linguistic analysis at scale and prove useful for
AJA linguists is the challenge we aim to tackle. Re-
flecting the linguists’ challenges, we focus on the per-
formance of the morphological tagger in tests that are
predictive of the real-world setting. For this reason, we
did not limit ourselves to purely automated approaches,
but also explored a hybrid human–machine approach,
wherein the human expert contributes to the automatic
approach.

The rich morphology of Arabic and its use of
morpho-syntactic affixes led us to focus on character-
based models (rather than word-based models), as
these can identify key morphemes that are essential
for annotating OOV words. Starting from a word-
based LSTM neural network architecture, we inte-
grated character-level information via either an LSTM
or a CNN. Subsequently we explored a two-tier hier-
archical approach to morphological tagging with POS
tags at its base and the morphology tags building on
that. This hierarchy mirrors the underlying character
of Arabic annotation, where each POS tag has a set of
legal morphological tags. The two-tier approach also
enables exploring a human-in-the-loop step in between
the two tiers. Our best performing strategy, denoted
AJATag for simplicity, is now available for use by AJA
linguists.8 To evaluate the usefulness of the AJATag

8https://github.com/technion-cs-nlp/
nlp4aja

strategy we compared it to the off-the-shelf POS and
morphological tagger, MarMoT, which is based on CRF.
All models were trained on the annotated TAJA corpus.

For the base task of POS tagging, we found that
among the evaluated neural network architectures, rep-
resenting a word using a CNN run on its characters
performed better than an LSTM or ignoring the char-
acters altogether. Training on the TAJA corpus, the
POS accuracy of the chaR-cnnmodel was 87.4±0.58%.
This accuracy is only slightly lower than the 89.17%
accuracy obtained by MarMoT for this task. The 1.5%
difference suggest essentially similar performance for
the two models in a real-world setting. Morphology
tagging, as indicated above, is the most challenging
and time-consuming task that takes up 80% of the ex-
pert linguist annotation time. Here, too, chaR-cnn per-
formed better than the other neural network models we
explored, especially in a two-tier hierarchical approach.
The accuracy of this model, denoted herein as ‘hierar-
chical chaR-cnn (predicted POS)’, ranges from 81% to
91% for the different morphology analysis fields (anal-
ysis1, analysis2, additional tags). To further improve the
performance, we allowed for human input between the
two tiers in the form of manual correction of POS tags.
Using ‘true POS’ assignments, instead of the predicted
assignments, further improved the performance of the
‘hierarchical chaR-cnn (true POS)’ morphology tagger.
We denote this hybrid strategy AJATag and have com-
pared its performance on AJA to MarMoT. We use Mar-
MoT as is, without modifications or adaptations to a
hybrid setting, because for the linguists it is an off-the-
shelf tool that is to be used as is.

Evaluation of the morphological tagging by AJATag
demonstrated favorable performance across multiple
evaluation metrics:

• Field-by-field accuracy – AJATag accuracy for
the two main analysis fields (89.0%, 92.7%, re-
spectively) is higher by up to 7% compared to
MarMoT’s accuracy (82.3%, 85.6% respectively).
It should be noted that the greatest gain in ac-
curacy is in analysis1, which of the morphologi-
cal analysis fields is the richest and most difficult
to assign. Both approaches perform well identi-
fying the enclitic field with an accuracy greater
than 96%.

• Overall accuracy – We evaluate the overall ac-
curacy of the morphology taggers using a ‘flex-
ible’ score, which best mimics real-life useful-
ness of the tagger as it counts each correct tag
separately. The overall accuracy of AJATag was
91.2%, a little over 2% better than MarMoT
(89.0%).

• Accuracy for words with legal tag combina-
tions – In TAJA each POS tag has a set of le-
gal values for morphological tags. However, both
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taggers end up assigning a significant percentage
of the words with illegal tag combinations. It is
noteworthy, however, that for words that were
tagged with legal tag combinations (which are
themajority at over 80%) the accuracy of AJATag
went up by 4% to 95.2%, while the accuracy of
MarMoT was essentially unchanged.

• Out of Vocabulary accuracy – Perhaps the
most important predictor for future real-world
performance of any tagger is its success with
words that are out of vocabulary (OOV), espe-
cially as OOVwords account for 21% of the TAJA
test set. When using predicted POS tags with our
hierarchical chaR-cnnmodel, the accuracy on the
challenging analysis1 field for OOV words was
57.72%, better than MarMoT by approximately
2% (it also performed better on POS tagging of
OOV words with 72.58% vs. MarMoT’s 71.35%).
However, this important performance indicator
is where our hybrid AJATag strategy delivered its
most important fruits. The accuracy of AJATag
in the challenging task of morphologically tag-
ging OOV words is 74.91% and 78.42% for the
analysis1 and analysis2 fields, respectively, which
is significantly better than MarMoT’s OOV tag-
ging for these two fields (55.82% and 59.95%, re-
spectively). AJATag also performs much better in
the additional tags field for OOV words (85.4%
compared to MarMoT’s 75.0%).

The justification for the hybrid approach explored
herein is in its real-world usefulness, outside of the NLP
lab. The 56%–60% accuracy of the off-the-shelf solu-
tion for the two most important morphological fields,
analysis1 and analysis2, when applied to OOV words
is not sufficient for real linguistic work. In contrast,
the hybrid AJATag strategy achieved an accuracy level
of 74.91%–78.42% on morphological tagging of OOV
words, which is expected to be useful for real-world ap-
plications, improving upon MarMoT by 18%–19% for
this task on both analysis fields. It is reassuring that
even without the added human input, our fully au-
tomated hierarchical chaR-cnn performed better than
MarMoT on POS and analysis1 tagging of OOV words.
The value of the AJATag strategy was further confirmed
by other performance indicators, including its overall
accuracy and its accuracy on words with legal tag com-
binations, as defined above.

To assess the feasibility of the human interface ele-
ment in AJATag, we performed a real-world evaluation
of this process. The first-tier POS output was given to
two AJA linguists to correct, before moving on to the
second-tier morphology tagging. POS tags manually
corrected by a senior expert were perceived as the ‘true’
POS assignment, to which the performance of the au-
tomatic taggers as well as the corrections by a junior

expert were compared. It is reassuring that both auto-
mated taggers, our chaR-cnn model and MarMoT, per-
formed well at an almost identical accuracy (~89%) rel-
ative to the ‘true’ POS, an accuracy quite similar to the
91% accuracy by the junior expert, who is a PhD candi-
date with several years of experience in AJA linguistics.

To conclude, while not perfect, the hybrid AJATag
approach provides AJA linguists with a working solu-
tion that already impacts their real-world workflow in
a way that off-the-shelf tools cannot provide. In the fu-
ture we plan to continue improving these tools by ad-
dressing limitations such as tagging words with illegal
tag combinations. Nonetheless, we believe that even in
its current form AJATag could prove useful to linguists
as they take on the task of analyzing large untagged
AJA corpora. We hope that in the future we will be
able to expand the utility of these tools to other Judeo-
Arabic dialects.
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A Data
In this appendix, we detail the transliteration scheme
for JA texts used in this paper (Table 9). This table only
covers the consonants in JA, as the pronounciation of
the vowels in text is not always known.

We also show some of the tag sets used in TAJA. We
detail all the POS tags (Table 10), and themorphological
tags of the more prominent POS tags (Tables 11, 12, 13
and 14).

Hebrew letter Transliteration

א ʾ
ב b
ג' ǧ
ג ġ
ד d
ה h
ו w
ז z
ח ḥ
ט ṭ
י y
כ k
כ' x
ל l
מ m
נ n
ס s
ע ʿ
פ f
צ ṣ
צ' ḍ
ק q
ר r
ש š
ת t

Table 9: Transliteration table for Hebrew (JA) letters.

POS code Hebrew POS POS

שע עצם שם noun
פע פועל verb
מל מילית particle
שת תואר שם adjective
שפ פרטי שם proper noun
מס מספר number
כג גוף כינוי pronoun
כר רמז כינוי demonstrative
כז זיקה כינוי relative pronoun
תפ הפועל תואר adverb
הצ הצגה presentative
תז זמן תיאור temporal adjunct
תמ מקום תיאור locative adjunct
רת תיבות ראשי acronym

Table 10: Legal POS tags in TAJA.
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Nouns

analysis1
code

analysis2
code

additional
tags code

זכר masculine יחיד singular NA
נקבה feminine רבים plural
עברי Hebrew זוגי dual
ארמי Aramaic
לועזי foreign

Table 11: Legal morphological analyses for nouns.

Verbs

analysis1
code

analysis2
code

additional
tags code

(בניין) (derived stem) (זמן) (tense) (גוף) (person)
בנ1 I עב perfect י1 1s
בנ2 II עת imperfect יז2 2sm
בנ3 III צו imperative ינ2 2sf
בנ4 IV בפע passive participle יז3 3sm
בנ5 V בפו active participle ינ3 3sf
בנ6 VI מצ verbal noun ר1 1p
בנ7 VII לפעול infinitive רז2 2pm
בנ8 VIII רנ2 2pf

בנ10 X רז3 3pm
nבנ passive stem רנ3 3pf

related to VII יחיד participle sm

tבנ
passive stem יחידה participle sf
with a t/tt prefix רבים participle pm

רבות participle pf

Table 12: Legal morphological analyses for verbs.

Adjectives

analysis1
code

analysis2
code

additional
tags code

יחיד singular masculine עברי Hebrew NA
יחידה singular feminine ארמי Aramaic
רבים plural masculine לועזי foreign
רבות plural feminine

Table 13: Legal morphological analyses for adjectives.

Proper Nouns

analysis1
code

analysis2
code

additional
tags code

אדם person משוערב Arabized NA
מקום place מתורגם translated
עם people עברי Hebrew

האל God

Table 14: Legal morphological analyses for proper nouns.
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B Experiments
After determining that the chaR-cnn model is the best
of the three options, we conducted hyperparameter
tuning by k-fold cross-validation (𝑘 = 5). The hyper-
parameters that we wanted to test are summarized in
Table 15, where the reported statistics and standard
deviation are over the folds. Rather than report the
mean for each hyperparameter test, we report differ-
ence between the base configuration result and the hy-
perparameter result. The value of each hyperparam-
eter in the base configuration appears in parentheses
following the name of the hyperparameter. As we are
attempting to optimize a large number of hyperpa-
rameters, grid search was deemed unfeasible (with a
Cartesian product of over 23k hyperparameter combi-
nations). Instead, we test each hyperparameter sepa-
rately against the base configuration. However, we saw
no significant differences between various configura-
tions. This is evident from the table, as in most cases,
the results for the tested hyperparameters are within
one standard deviation of the base configuration result.
Therefore, we continue conducting all our experiments
using the original base configuration.
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Hyperparameter value micro average std num epochs
accuracy (mean) (mean)

base configuration NA 0.8908 0.0058 13

batch size (8)
4 -0.0023 0.0069 12.6

16 -0.0034 0.0048 12

directions (2) 1 -0.0004 0.0042 15.2

dropout (0.5)
0.0 -0.0041 0.0036 11.6
0.3 -0.0048 0.0083 11.8
0.7 -0.0031 0.0079 13.4

learning rate (0.1)
0.01 -0.0007 0.0050 12.8
0.05 +0.0009 0.0047 13.4
0.5 -0.0022 0.0099 12.8

kernel width (6)
4 -0.0046 0.0048 14.2
8 -0.0053 0.0086 11.2

num kernels (500)
250 -0.0054 0.0049 13.2

1000 -0.0019 0.0099 12.4

char embedding 10 -0.0092 0.0081 15
dim (25) 50 <-0.0001 0.0045 11.2

word embedding 50 -0.0009 0.0047 13.8
dim (100) 200 +0.0013 0.0027 13.2

hidden dim (100)
50 -0.0009 0.0060 13.6

200 -0.0006 0.0039 12.6

Table 15: Summary of hyperparameter tuning (base configuration value in parentheses.)
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Lexical variation in English language podcasts, editorial media, and

social media

Jussi Karlgren, Spotify, Stockholm, Sweden

Abstract The study presented in this paper demonstrates how transcribed podcast material di�ers with respect to lexical content

from other collections of English language data: editorial text, social media, both long form and microblogs, dialogue from movie

scripts, and transcribed phone conversations. Most of the recorded di�erences are as might be expected, reflecting known or assumed

di�erence between spoken and wri�en language, between dialogue and soliloquy, and between scripted formal and unscripted

informal language use. Most notably, podcast material, compared to the hitherto typical training sets from editorial media, is

characterised by being in the present tense, and with a much higher incidence of pronouns, interjections, and negations. These

characteristics are, unsurprisingly, largely shared with social media texts. Where podcast material di�ers from social media material

is in its a�itudinal content, with many more amplifiers and much less negative a�itude than in blog texts. This variation, besides

being of philological interest, has ramifications for computational work. Information access for material which is not primarily topical

should be designed to be sensitive to such variation that defines the data set itself and discriminates items within it. In general,

training sets for language models are a non-trivial parameter which are likely to show e�ects both expected and unexpected when

applied to data from other sources and the characteristics and provenance of data used to train a model should be listed on the label

as a minimal form of downstream consumer protection.

1 Genres and podcast transcripts

The way human language is used varies across chan-

nels and styles, and we have for the longest while made

a clear distinction between spoken and wri�en lan-

guage as two major distinctive modes of communica-

tion (Cederschiöld, 1897; Ong, 1982; Biber, 1991; Coul-

mas, 2003).

The di�erences between writing and reading can

to a large extent be related to situational di�erences:

where speech has been used in transient situations in

which interlocutors are present, writing has typically

been used in asynchronous communication with par-

ticipants at a remove from each other. This distinction

has through the introduction of communication tech-

nologies become less and less clear-cut. Wri�en lan-

guage is used for momentary and fleeting conversa-

tions with li�le planning or editorial oversight; spoken

language material is created, published and distributed

in ways which are more formal and more permanent

and archival than before.

Podcasts are a new medium and a new format

for spoken language. The styles of language use in

podcasts are as yet unformed and have not yet co-

alesced into stable functional and generally accepted

genres: podcast material will require us to recalibrate

many of the assumptions we make about how language

is used. Recently, a collection of over 100,000 pod-

cast episodes, including automatically generated tran-

scripts, has been released for the purposes of retrieval

and summarisation experimentation. The companion

paper released with the podcast material set gives some

indicative di�erences between the transcripts and writ-

ten language as represented by the Brown corpus (Fran-

cis and Kucera, 1967) and shows i.a. that the frequency

of amplifiers and personal pronouns is greater than in

the various genres represented in the Brown corpus

(Cli�on et al., 2020).

This paper demonstrates how some such di�erences

across text collections of di�erent types are indicative

of genre di�erences, some of which can be expected to

depend on how spoken genres continue to evolve with

changing technology and evolving situations of usage.

This examines di�erences in anchoring, subjective lan-

guage, and discourse handling, which can all be ex-

pected to be dimensions in which podcast language will

di�er from wri�en genres.

Podcasts are a rapidly evolving medium. The vari-

ation and volatility is great and we can expect that

only a few years from now there will be new formats of

language use not represented in the present collection.

These measurements are intended to inspire the sys-

tematic exploration of such di�erences as they occur,

to make possible documentation of current and future
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changes in the medium, to make explicit di�erences

that may have e�ects on the applicability of language

models trained on one type of material on another, and

to ensure that application to classification, retrieval, or

large scale extraction of information is informed and

sensitive to those systematic di�erences that might im-

pact results.

2 Data Overview
Seven data sets were used for these experiments. These

data sets are of varying age and collected with various

methods, but have all been used in research and bench-

marking projects and are selected by virtue of being ac-

cessible for experimentation and further study. The rep-

resentativeness of the corpora may vary: movie scripts

change over time as the cra� of writing and acting

evolves; conventions in phone conversations change as

new technologies cater to new use cases; social media

platforms, with various conventions and various tech-

nological a�ordances, go in and out of fashion; editorial

media shi� their focus and their o�erings according to

the shi�ing constitution and preferences of their au-

diences. The editorial media data set is the one most

clearly governed by conventions and constraints im-

posed by audience expectations for the genre and is

likely to be the data set with least change over time.

These changes are all likely to a�ect the stylistic statis-

tics on reported below in various ways; the di�erences

found between genres are robust enough to majorise

the within genre di�erences over time.

Editorial media A collection of Associated Press

newswire text from year 1989-1990 made avail-

able for experimentation in various shared tasks

as part of the TIPSTER corpus (Harman and

Liberman, 1993). These represent edited text con-

forming to standard wri�en English language us-

age.

… Citing financial disarray in Mas-
sachuse�s government, a major bond rat-
ing agency cut the state’s credit rating Fri-
day for the second time this year, a move
that could add millions to borrowing costs.
The decision by Standard & Poor’s Corp. to
downgrade Massachuse�s bonds from AA-
to A represents a harsh assessment of the fis-
cal policies of Gov. Michael S. Dukakis and
the state Legislature. “The state’s economy
remains strong, while debt and fiscal man-
agement display serious weaknesses,” the
agency said. …

Social media Data from the Blog Authorship Cor-

pus which consists of a large age- and gender-

balanced collection of about 700 000 English

language blog posts collected for the purpose

of experimentation with authorship a�ribution

(Schler et al., 2006). These are intended to rep-

resent informal wri�en language in a variety of

subgenres.

… Yesterday I learned a new programming
language, Groovy . Well, I wrote a simple
program in Groovy. I need to do much more
with it before I learn to ”think in Groovy.”
This is important. There’s a huge benefit to
learning a new programming language, so
much so that The Programatic Programmers
recommend learning a new language every
year. Learning a new programming language
can be di�icult. Let’s be precise: learning to
write working programs in a new language
is relatively easy, but the first impulse is to
think in the style of the languages you al-
ready know and write programs using the
syntax of the new language. …

Microblogs A set of mostly English language mi-

croblog posts from Twi�er collected for analysis

of public opinion during the fall of 2017.
1
. These

are intended to represent real-time language use,

but in fact contain a large number of press re-

lease announcements, news headlines, and links

to further reading.

• Mystery Fanged Sea Creature Washes Up on Texas
Beach a�er Hurricane Harvey URL

• Hope and kudos for hurricane victims in health-
care: URL

• as i sit in this heat i also wish tha best for those
that caught harvey cause i know theyre worse o� n
im grateful we ain get hit directly

• Having a gun license is what you’re thinking about
a�er a disaster? If you’re in Taaaxas. #Harvey URL

• @UId Hi, sorry missed your question! 7-8pm at
harvey hadden, this will be the only one i’m afraid

Podcast transcripts A large collection of automati-

cally generated English language podcast tran-

scripts released by Spotify for research purposes,

with episodes representing a variety of podcast

formats, styles, levels of formality, and topics

(Cli�on et al., 2020). The transcripts include sen-

tence breaks automatically inferred by the tran-

scription system.

… Only on my hands no with my hips ever.
So first what I did was visiting a doctor be-
cause every time when I was trying to stretch

1
The post ids are available at http://www.lingvi.st/

corpora/storm.txt
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myself like to take stretch classes, I ended
up with like a really bad pain for like a few
weeks or months. So then they visited doc-
tor and I really like he told me that my spine
like …

Movie scripts A collection of English language movie

scripts from the Film Corpus (Walker et al., 2012).

The corpus has separated dialogue from scene de-

scriptions and director instructions; for the pur-

pose of this study, only the dialogue portion has

been used, as a sample of language which is pro-

duced in wri�en form but intended to represent

natural speech.

…
- What’s that shit?
- A book. It’s called reading. You should try
it some time.
- You wanna read something. Read between
the lines.
- Well here’s something even you can relate
to. Albert got a lo�a trim.
- That genius thing is a babe magnet.
- Lemme see that book.
…

Telephone conversations The Switchboard corpus is

a collection of transcribed English language tele-

phone conversations on a variety of topics (God-

frey et al., 1992; Godfrey and Holliman, 1997). For

this study a separately annotated portion which

is freely available is used (Jurafsky et al., 1997).

This is intended to represent the character of

spontaneous unscripted speech. This transcrip-

tion is fairly carefully done to preserve e.g. inter-

ruptions and overlapping speech, in contrast with

the podcast transcription.

…
— What kind of …
— Okay.
— … eating out do you enjoy?
— Well, I like dining out.
— Of course, it means that I don’t have to
cook.
— Right .
— But, um, I’m a divorced woman.
— I have one child …
— Uh-huh.
— … and, you know, when, when we dine out
we go to like medium priced restaurants.
— Uh—huh.
— I don’t, I don’t particularly
— I think it’s sort of a waste of money to go
real, to a real high priced restaurant.

— Do you go like home cooking, like Black-
Eyed Pea and that kind of thing or …
— Um, e-, n-
— … cafeteria?
— Not really.
— We go wh-, more for the, uh, Chinese …
— Me too .
— … and Italian …
— Uh-huh.
— … and stu� like that. Mexican, stu� …
— Mexican,
— uh-huh.
— … that I can’t cook .
— Uh, we do too.
— We do the same.
— Yeah.
…

Popular lectures The popular science TED talk series

on ”technology, entertainment, and design” pro-

vide transcripts of lectures given by the speakers.

The lectures are information-dense, but informal

and entertaining in style and are mostly mono-

logues, with the occasional conversational inter-

view. A selection of such transcripts has been

made available for experimentation (Banik, 2017).

I’d like to tell you the tale of one of my fa-
vorite projects. I think it’s one of the most
exciting that I’m working on, but I think it’s
also the simplest. It’s a project that has the
potential to make a huge impact around the
world. It addresses one of the biggest health
issues on the planet, the number one cause
of death in children under five. Which is…?
Water-borne diseases? Diarrhea? Malnutri-
tion? No. It’s breathing the smoke from in-
door cooking fires — acute respiratory infec-
tions caused by this.

100 000 sentences from each source were sampled for

inclusion in this study, using the Natural Language

Toolkit (NLTK) for sentence segmentation which splits

the text to sentences at major delimiters (”.”, ”!”, ”?”)

and at paragraph breaks (Bird, 2006). Some quanti-

tative data for the samples are given in Table 1. No-

ticeable is that the sentence length varies considerably

across the collections. This reflects both genre variation

and transcription practice, as can be seen in the above

example extracts: the movie scripts contain very short

sentences authored to describe rapid dialogue and over-

lapping turns, the phone conversation transcripts ren-

der short turns and interruptions as separate sentences,

where, by contrast, the podcast transcripts have longer

turns on average. Repeated samples were drawn to en-

sure stability of the measures made, and all measures

and statistics given in the following tables are averaged
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across a number of resamplings, rounded to two signif-

icant figures.

3 Dimensions of variation
The measures examined in this study focus on readily

inspectable aspects of language use where spoken lan-

guage and informal channels traditionally are assumed

to show di�erence to wri�en formal genres. Spoken

language due to its immediacy and synchronous na-

ture frequently has more overt markers for interper-

sonal functions, and utilises di�erent textual functions

to organise the discourse. Since wri�en genres more

frequently are used for abstract and complex topical

ma�er, it is to be expected that those ideational func-

tions that concern argumentation and logical struc-

ture are rendered di�erently. Biber and colleagues, in

their studies on register variation across several lan-

guages (Biber, 1995), posit a number of variational di-

mensions using factorial analyses and then formulate

a low dimensional space of functional bases in which

they position the genre samples such as lectures, face-

to-face conversations, broadcasts, private le�ers, aca-

demic prose, o�ical documents, and many more.

This study uses a subset of the variables examined

by Biber and colleagues (the variables used by Biber are

variously accessible for automated analysis). The addi-

tion of podcast material to the data used by Biber are

likely to extend the variational dimensions posited by

his original study, since podcast material cuts across

many of the suggested dimensions such as ”involved

vs informational” which separates e.g. speeches from

e.g. academic prose; ”narrative vs non-narrative”, which

separates fiction text from e.g. face-to-face interaction;

”textual vs situational reference”, which separates e.g.

phone conversations from o�icial documents and so

forth. Podcasts incorporate material with the situat-

edness of personal conversations to the abstraction of

formal lectures, and material with the immediacy and

interactive online planning of live dialogue to the edito-

rially oriented production qualities of broadcast news.

We can expect that many of the variational dimensions

are relevant for podcasts even as new conventions and

new genres gradually develop.

Spoken unscripted language is characterised by ex-

plicit features related to the organisation of discourse

which involve turn-taking, interruptions, dysfluencies,

and repair. These are somewhat challenging to study

with the given collections, especially as transcription

o�entimes removes and normalises much of the sig-

nal. Notably, in the present collections, while the

phone conversation transcripts render turn-taking in

detail, the podcast transcriptions leave out overlapping

speech.

This study focusses on features of language use

which is situated, where the participants are syn-

chronously present during the communicative situa-

tion as opposed to communication where the author or

speaker is separated from the audience, and personal
and subjective, where the a�itude and stance of the au-

thor or speaker is clearly expressed and modulated to

capture the a�ention and fit the reactions of the in-

tended audience, in contrast to language framed to be

formal and couched in objective terms and expressions,

abstracted from the present situation.

The surface features to be expected are more a�itu-

dinal and overtly subjective language, with intensifiers,

first and second person pronouns, more present tense

and narratives, more questions and a�irmations than

in scripted and planned language use.

4 A�itude and A�ect in Lan-
guage

Subjective language is of interest for many reasons,

but not least for its potential applications in informa-

tion retrieval and text categorisation. Since the intro-

duction of computational sentiment analysis as a re-

search topic (� et al., 2004) various e�orts to extend

or typologise the field have been explored, (Karlgren

et al., 2004; Karlgren, 2009; Feldman, 2013; Ravi and

Ravi, 2015) and many mostly lexical approaches were

implemented for commercial application. Now, with

computational methods that allow full scope over an

entire u�erance without relying on single items, some

of the lexical approaches are less immediately impres-

sive than before, but for reasons of transparency, many

are still in use in practical applications and they cor-

relate well with findings from non-lexical approaches.

For the present experiments, a standard lexicon of po-

lar items has been used to represent the manifold ex-

pressions of human emotion found in text (Hu and Liu,

2004), and the incidence of items from the lexicon are

shown in Table 2
2
.

The table gives counts both per word, i.e. how many

of the tokens of the collection sample were polar eval-

uative lexical items (le� half of the table), and per sen-

tence, i.e. how many sentences of the 100 000 sample

contained a polar evaluative lexical item (right half of

the table).

The results show that podcast transcripts have a no-

ticeably higher incidence of positive polarity items and

lower incidence of negative polarity items than writ-

ten genres and that popular lectures exhibit much the

same distribution. News stories exhibit more negative

polarity than positive polarity items, which is likely to

2
The item ”like” was removed from the list of positive items,

since it is very frequent in the spoken language material as a non-

a�itudinal discourse particle.
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Table 1: Descriptive statistics for the seven language collections, comparing average sentence length.

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts calls lectures

Number of sentences 100 000 100 000 100 000 100 000 100 000 100 000 100 000

Number of words 2 200 000 1 700 000 1 800 000 1 700 000 720 000 720 000 1 600 000

Words per sentence 22 17 18 17 7.2 7.2 16

Year of publication 1989-1990 2004 2017 2019 before 2010 early 1990s 2017

have to do with editorial considerations: negative news

drive reporting. This probably explains a similar imbal-

ance for the microblog posts, which to a large extent

are commentary to current news stories. The two more

traditional spoken genres have much lower counts of

both polarities, which may mean that the lexicon used

here is not optimised for spoken material or that spo-

ken language demonstrates polarity more o�en in con-

structional items rather than purely lexical ones (”This
put me o�.”).

5 Amplification
Amplifiers are linguistic items that serve to increase the

perceived strength of an evaluative expression. They

are typically constructed as adverbials, as shown in Ex-

ample (1) (�irk et al., 1985, §7.57 a) and in this study

such items are used, and other amplifying construc-

tions are le� aside. Amplifiers can be subcategorised in

several ways, and here a three-way distinction is made.

Gradation amplifiers increase the intensity of a gradal

expression: (very, immensely, substantially, fucking); af-
firmation amplifiers emphasise the commitment of the

speaker to the sentiment (truly, really); and surprise am-

plifiers communicate that the qualities under consider-

ation are unexpected or anomalous (amazingly, surpris-
ingly, unusually). These distinctions are of course not

independent of each other. The amplifiers used in this

study are given in Appendix A.

(1) a. Hurricane Irma is a very dangerous storm.

(microblog)

b. The immensely popular “Star Wars” isn’t

much good for teaching science. (news)

c. It just fucking cool. (podcast)

d. If you’re ready to find out who you are deep

down and live a truly authentic life. (pod-

cast)

e. Now if you use the right kind of atoms and

you get them cold enough, something truly
bizarre happens. (lectures)

f. My husband is he’s really sweet. (podcast)

g. Leaders of corporate America say business

is surprisingly good. (news)

h. That was interesting, and surprisingly
nice. (blog)

The incidence of amplifiers in the seven collections

are given in Table 3. We find that the podcast material

has an order of magnitude higher number of amplifiers

than most other genres. Popular lectures also exhibit

a similarly high incidence of amplifiers, but there is a

di�erence in how they are distributed over the subcat-

egories: podcasts show a very high incidence of a�irma-
tion amplifiers, which take purchase in the presence of

the speaker in the communicative situation. This is one

of the most di�erentiating features between podcasts

and popular lectures, which otherwise exhibit many

similar characteristics.

6 Negation

Negation is a foundational semantic operator whose ex-

act semantic function on the meaning of an u�erance

can be discussed and modelled at length (Von Klopp,

1993, e.g.). Negation can a�ect an entire clause (”I
didn’t eat the cookies.”) or more locally, a constituent

of a clause (”I will eat no more cookies.”). In English,

clausal negation most o�en is formed through the neg-

ative verbal a�ix ”n’t”, which in wri�en or more for-

mal registers, or when emphasised, o�en is rendered

as the separate lexical item ”not”. Local negation is

formed through prefixing the negated component with

”no” or ”not”, or by using more elaborate construction

such as ”neither … nor”, ”nobody”, ”none”, or ”never”

(�irk et al., 1985, §10.55�). Negation has an obvious

relation to polarity and antonymy which has motivated

great interest in research on methods for the practi-

cal handling of negation in sentiment analysis and re-

lated experiments and applications (Choi and Cardie,

2009; Tanushi et al., 2013; Mohammad et al., 2013; Kir-

itchenko et al., 2014; Reitan et al., 2015, i.a.). Some ex-

amples of negation and its e�ect on polarity are given

in Example (2). In this study, negation is included as

an example of an accessible semantic operator useful

for modulation and modification of a�itudinal expres-

sions. The list of negations used in this study, compiled

from �irk et al. (1985) and Biber (1995) is given in Ap-

pendix B and the incidence of negations is given in Ta-

ble 4. We can here observe how informal genres, un-

surprisingly, exhibit many more contracted forms than

the wri�en material. We also find that the incidence of
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Table 2: Occurrence and proportion of negative and positive polar lexical items from Hu and Liu (2004) in seven collec-

tions of language, per word and per sentence in a sample of 100 000 sentences from each collection.

Per word Per sentence

Positive Negative Positive Negative

Editorial media 39 000 (1.8 %) 56 000 (2.6 % ) 30 000 39 000

Social media 44 000 (2.6 % ) 41 000 (2.5 % ) 31 000 28 000

Microblogs 27 000 (1.5 % ) 42 000 (2.3 % ) 21 000 29 000

Podcast transcripts 46 000 (2.7 % ) 29 000 (1.7 % ) 33 000 21 000

Movie scripts 16 000 (2.2 % ) 18 000 (2.6 % ) 14 000 16 000

Phone conversations 16 000 (2.3 % ) 9 000 (1.3 % ) 15 000 8 100

Popular lectures 41 000 (2.6 % ) 29 000 (1.8 %) 31 000 22 000

Table 3: Occurrence and proportion of lexical amplifiers (listed in Appendix A) in seven collections of language, per

word and per sentence in a sample of 100 000 sentences from each collection.

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts conversations lectures

Per word

amplifiers 3 400 8 100 1 800 13 000 2 400 5 200 11 500

gradation 2 100 3 200 840 4 400 1 400 1 500 5 800

(0.097 % ) (0.19 % ) (0.046 % ) (0.26 % ) (0.20 % ) (0.20 % ) (0.37 % )

a�irmation 710 4 200 480 7 300 800 3 500 4 100

(0.033 % ) (0.26 % ) (0.026 % ) (0.43 % ) (0.11 % ) (0.49 % ) (0.26 % )

surprise 580 680 470 950 160 220 1 600

(0.027 % ) (0.041 % ) (0.026 % ) (0.055 % ) (0.021 % ) (0.031 % ) (0.10 % )

Per sentence

gradation 2 000 3 000 820 3 900 1 400 1 300 5 100

a�irmation 700 3 900 440 6 400 780 3 400 4 100

surprise 570 660 410 910 160 220 1 600

negation in general is higher in social media and pod-

casts than in the other material. There are many hypo-

thetical explanations for this observation which need

further study: a tentative explanation is that negation

is at times used as a discourse marker (”No, no, no, no,
we can’t do that.” or even ”No, you are right.”)

(2) a. We would continue to pursue the accelera-

tor technology, but at the moment it is not
as mature as fission reactors. (news)

b. And it’s crazy how it’s it’s not crazy. (pod-

cast)

c. My boat got hit by #IrmaHurricane the

ranch is #flooding from #irma but #han-

kjr02 is following me on Twi�er, so it can’t
be all bad. (microblog)

d. and, it’s not very expensive that way.

(phone)

e. And that is not bad at all. (phone)

f. Ladies and gentlemen, a picture is not
worth a thousand words. In fact, we found

some pictures that are worth 500 billion

words. (lectures)

7 Interrogatives

The incidence of interrogative u�erances, defined as

sentences that end with a ”?”, di�ers across the collec-

tions as shown in Table 5. It is likely, here as in pre-

ceding statistics, that the results are influenced by con-

ventions for transcription which vary across the spo-

ken genres, but the podcast material which is the only

automatically transcribed material shows a higher in-

cidence of questions than some of the other genres,

rather than the lower incidence which might be ex-

pected from transcription errors. The movie script col-

lection stands out here, with every sixth sentence a

question, reflecting the type of conversational to-and-

fro characteristic of the genre.

8 Situatedness

Personal pronouns are used when the author or speaker

and the audience have a shared understanding of the

context they are in. First and second person pronouns

are less prevalent in formal discourse and more preva-

lent in face-to-face conversation than in other situa-

tions; narrative discourse will show a higher propor-
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Table 4: Occurrence and proportion of negated sentences in seven collections of language in a sample of 100 000 sen-

tences from each collection(negations used are listed in Appendix B).

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts conversations lectures

negations 17 000 24 000 6 800 28 000 1 900 12 000 17 000

”no”, ”not” 10 000 9 000 3 500 9 600 4 200 3 800 8 400

contractions 3 800 9 900 4 000 13 000 8 800 7 100 7 300

constructions 1 800 2 500 1 300 2 100 2 300 1 100 1 300

Table 5: Occurrence and proportion of interrogative sentences in seven collections of language in a sample of 100 000

sentences from each collection.

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts conversations lectures

�estions 730 7 100 2 800 7 600 17 000 3 700 8 000

tion of third person pronouns than non-narrative dis-

course. The expected di�erences are found in the data,

as shown in Table 6. These counts include reflexives

(”myself ”) and possessives (”our”, ”ours”); the third per-

son counts do not include ”it”; the second person counts

include impersonal ”you” as in ”when you bake bread

you usually add some kind of leavening”. Notable is

firstly (and unsurprisingly) the high incidence of per-

sonal pronouns in the spoken genres together with the

social media texts compared to the two other genres.

Secondly, notable is the large number of second person

pronouns in podcast material, movie scripts, and phone

conversations, reflecting the dyadic conversational for-

mat in many of them. Thirdly, the large number of 1st

person plural pronouns in the popular lecture data, re-

flecting the genre-specific pa�ern of including the audi-

ence in an u�erance (”When we think about why we hear,
we don’t o�en think about the ability to hear an alarm or
a siren, although clearly that’s an important thing.”) . A

final striking observation is the consistently low level of

reference to feminine correlates across all collections.

Another measure of situatedness is the distribution

of lexical categories over content words. Table 7 shows

how verbs are less common and proper nouns are more

common in editorial media and in microblogs compared

to the other four genres. These counts are based on

part of speech tagging as provided by the NLTK part of

speech tagger (Bird, 2006). The di�erence is most likely

related to news reporting being based on participating

people, organisations, and locales. By contrast, the rel-

ative occurrence of verbs is higher in the spoken genres

and in social media.

Shared across all genres except the news material

is the preponderance of present tense in comparison

with past tense as shown in Table 8. This is an indi-

cator of narrative discourse, where language is used to

describe something that preceded the communicative

situation. The news genre is highly focussed on report-

ing past events and this is reflected in the tense rep-

resentation. These counts are also based on the NLTK

part of speech tagger, which provides separate labels

for past tense verbal forms. Some sentences have mixed

tense, subclauses with a tense di�erent from the matrix

clause, e.g., or other more complex verbal structure and

are omi�ed from the table.

9 Concluding Observations

This initial study demonstrates some clear di�erences

in lexical content between transcribed podcast material

and other collections of language data: editorial text,

social media, both long form and microblogs, dialogue

from movie scripts, transcribed phone conversations,

and popular lectures. Most of the recorded di�erences

are as might be expected, reflecting known or assumed

di�erence between spoken and wri�en language, be-

tween dialogue and soliloquy, and between scripted for-

mal and unscripted informal language use. Most no-

tably, podcast material, compared to the hitherto typ-

ical training sets from editorial media, is characterised

by being in the present tense, and with a much higher

incidence of pronouns and negations. These character-

istics are, unsurprisingly, largely shared with social me-

dia texts. Where podcast material di�ers from social

media material is in its a�itudinal content, with many

more amplifiers and much less negative a�itude than in

blog texts. There is a solid base to explain these di�er-

ences in the studies by Biber referred to above, and in

the more general notion of metafunctions of language

which are utilised with various relative strength across

communicative situations.

It is to be expected that the results presented in

this study will age rapidly with respect to their details:

the podcast medium will evolve and new genres and

stylistic conventions will emerge an coalesce in the near

future as podcasts gain a broader audience, more cre-

ators, and further situations of use. The popular lec-
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Table 6: Occurrence of personal pronouns and their proportion of the vocabulary in seven collections of language.

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts conversations lectures

1 p sg 8 000 96 000 6 000 77 000 33 000 36 000 40 000

( 0.37 %) ( 5.8 %) ( 0.33 %) ( 4.5 %) ( 4.6 %) ( 5.0 %) ( 2.5 %)

2 p 2 500 16 000 7 200 52 000 23 000 18 000 30 000

( 0.11 %) ( 0.96 %) ( 0.39 %) ( 3.0 %) ( 3.2 %) ( 2.6 %) ( 1.9 %)

3 p sg m 22 000 14 000 4 700 14 000 9 000 3 100 7 600

( 1.0 %) ( 0.82 %) ( 0.26 %) ( 0.81 %) ( 1.2 %) ( 0.44 %) ( 0.48 %)

3 p sg f 4 500 8 500 2 000 5 900 4 100 2 000 3 700

( 0.21 %) ( 0.51 %) ( 0.11 %) ( 0.34 %) ( 0.56 %) ( 0.29 %) ( 0.23 %)

1 p pl 5 500 12 000 7 000 18 000 5 500 8 000 32 000

( 0.25 %) ( 0.74 %) ( 0.38 %) ( 1.0 %) ( 0.76 %) ( 1.1 %) ( 2.0 %)

3 p pl 11 000 7 000 4 800 13 000 2 600 9 200 15 000

( 0.50 %) ( 0.42 %) ( 0.26 %) ( 0.74 %) ( 0.36 %) ( 1.3 %) ( 0.97 %)

Table 7: Distribution of lexical categories for content words and their proportion of the vocabulary in seven collections

of language based on NLTK part of speech tagging.

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts conversations lectures

verbs 350 000 320 000 230 000 370 000 150 000 140 000 300 000

(16 % ) (19 % ) (12 % ) (21 % ) (21 % ) (20 % ) (19 % )

nouns 470 000 310 000 400 000 250 000 110 000 99 000 220 000

(22 % ) (19 % ) (22 % ) (14 % ) (15 % ) (14 % ) (13 % )

proper nouns 260 000 92 000 460 000 63 000 52 000 21 000 51 000

(12 % ) (5.5 % ) (25 % ) (3.7 % ) (7.2 % ) (2.9 % ) (3.1 % )

adjectives 160 000 120 000 170 000 96 000 36 000 39 000 110 000

(7.4 % ) (7.1 % ) (9.2 % ) (5.6 % ) (5.0 % ) (5.4 % ) (6.7 % )

Table 8: Verb tense of sentences in seven collections of language in a sample of 100 000 sentences from each collection.

Sentences with mixed tense or complex verb chains omi�ed.

Editorial Social Microblogs Podcast Movie Phone Popular

media media transcripts scripts conversations lectures

present tense 14 000 32 000 25 000 41 000 39 000 35 000 45 000

past tense 54 000 26 000 25 000 14 000 13 000 11 000 21 000
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tures, an o�shoot from classical academic lectures, but

with their form modified by new transmission chan-

nels and by influence from other staged presentations,

shows one direction of development which is clearly

related to podcasts; we should expect some podcasts

to adhere to this genre, while others will be more like

drama and scripted speech, and some continue to ex-

hibit similarities to more unscripted and informal con-

versation. Across all genres, the di�erence between he
and she in their various forms was dramatic — this is

something that may change over time.

These observations have some direct ramifications

for computational work. Firstly, any useful approach

to information access for material which is not primar-

ily topical should be designed to be sensitive to such

variation that defines the data set itself and discrimi-

nates items within it. More generally, training sets for

language models are a non-trivial parameter which are

likely to show e�ects both expected and unexpected

when applied to data from other sources. The charac-

teristics and provenance of data used to train a model

should be listed on the label as a minimal form of

downstream consumer protection. What these counts

specifically demonstrate is that filtering the a data set

through application of ”stoplists” or other feature re-

duction methods or assessing the quality of language

models using gold standards built on referential seman-

tics based on nouns (cf. Karlgren (2019)) will reduce the

richness of expression more in pronoun-rich and verb-

rich genres than in those with less pronouns and verbs.

The variation demonstrated by the lexical tables

given here is of obvious philological interest, casting

light on how human communicative behaviour is mod-

ulated by the channel over which it proceeds. These re-

ported statistics are but a scratch on the surface: more

sophisticated and hypothesis-driven methods will be

able to present more unified underlying variables and

models with more explanatory power.
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språk [Swedish as a wri�en language]. We�ergren &

Kerber, Gothenburg.

Choi, Yejin and Claire Cardie. 2009. Adapting a po-

larity lexicon using integer linear programming for

domain-specific sentiment classification. In Proceed-
ings of the 2009 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 590–

598. Association for Computational Linguistics.

Cli�on, Ann, Sravana Reddy, Yongze Yu, Aasish Pappu,

Rezvaneh Rezapour, Hamed Bonab, Maria Eskevich,

Gareth Jones, Jussi Karlgren, Ben Cartere�e, et al.

2020. 100,000 podcasts: A spoken english document

corpus. In Proceedings of the 28th International Con-
ference on Computational Linguistics (Coling). Inter-

national Commi�ee for Computational Linguistics.

Coulmas, Florian. 2003. Writing systems: An introduc-
tion to their linguistic analysis. Cambridge University

Press.

Feldman, Ronen. 2013. Techniques and applications

for sentiment analysis. Communications of the ACM,

56(4):82–89.

Francis, W Nelson and Henry Kucera. 1967. Com-
putational analysis of present-day American English.

Brown University Press, Providence.

Godfrey, John J and Edward Holliman. 1997.

Switchboard-1 Release 2. Linguistic Data Con-
sortium, Philadelphia, 926.

Godfrey, John J, Edward C Holliman, and Jane Mc-

Daniel. 1992. SWITCHBOARD: Telephone speech

corpus for research and development. In Proceedings
of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 1, pages 517–

520. IEEE.

Harman, Donna and Mark Liberman. 1993. TIPSTER
Complete LDC93T3A Web Download. Linguistic Data

Consortium, Philadelphia.

Northern European Journal of Language Technology



Hu, Minqing and Bing Liu. 2004. Mining and summa-

rizing customer reviews. In Proceedings of the 10th
ACM SIGKDD International conference on Knowledge
discovery and data mining (KDD), pages 168–177. As-

sociation for Computing Machinery.

Jurafsky, Dan, Elizabeth Shriberg, and Debra Biasca.

1997. Switchboard SWBD-DAMSL labeling project

coder’s manual, Dra� 13. Boulder Institute of Cogni-
tive Science Technical Report.

Karlgren, Jussi. 2009. A�ect, appeal, and sentiment as

factors influencing interaction with multimedia in-

formation. In Theseus ImageCLEF workshop on visual
information retrieval evaluation, pages 8–11.

Karlgren, Jussi. 2019. How lexical gold standards have

e�ects on the usefulness of text analysis tools for dig-

ital scholarship. In International Conference of the
Cross-Language Evaluation Forum for European Lan-
guages (CLEF), pages 178–184. The CLEF Initiative.

Karlgren, Jussi, Gunnar Eriksson, Stefano Mizzaro, Paul

Clough, Mark Sanderson, Kristofer Franzén, and

Preben Hansen. 2004. Reading Between the Lines:

A�itudinal expressions in text. In Proceedings of the
AAAI Spring Symposium Workshop on Exploring At-
titude and A�ect in Text: Theories and Applications.
American Association for Artificial Intelligence.

Kiritchenko, Svetlana, Xiaodan Zhu, and Saif M Mo-

hammad. 2014. Sentiment analysis of short informal

texts. Journal of Artificial Intelligence Research, pages

723–762.

Mohammad, Saif M, Svetlana Kiritchenko, and Xiaodan

Zhu. 2013. NRC-Canada: Building the state-of-the-

art in sentiment analysis of tweets. In Second Joint
Conference on Lexical and Computational Semantics
(* SEM), pages 321–327.

Ong, Walter J. 1982. Orality and literacy. Routledge.

�, Yan, James Shanahan, and Janyce Wiebe. 2004. Pro-
ceedings of the AAAI Spring Symposium Workshop on
Exploring A�itude and A�ect in Text: Theories and Ap-
plications. American Association for Artificial Intelli-

gence.

�irk, Randolph, Sidney Greenbaum, Geo�rey Leech,

and Jan Svartvik. 1985. A comprehensive grammar of
the English language. Longman, London.

Ravi, Kumar and Vadlamani Ravi. 2015. A survey on

opinion mining and sentiment analysis: tasks, ap-

proaches and applications. Knowledge-Based Sys-
tems, 89:14–46.

Reitan, Johan, Jørgen Faret, Björn Gambäck, and Lars
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A Amplifiers

gradation amplifiers a�irmation amplifiers surprise amplifiers

very absolutely amazingly

awfully definitely dramatically

completely famously drastically

enormously genuinely emphatically

entirely immaculately exceptionally

exceedingly overly extraordinarily

excessively perfectly fantastically

extremely really horribly

fucking severely incredibly

fuckin surely insanely

greatly thoroughly phenomenally

highly truly remarkably

hugely undoubtedly ridiculously

immensely strikingly

intensely surprisingly

particularly terribly

radically unusually

significantly wildly

strongly wonderfully

substantially amazing

totally dramatic

u�erly drastic

vastly emphatic

exceptional

extraordinary

fantastic

incredible

phenomenal

remarkable

striking

surprising

unusual

B Negations
Negations are taken from �irk et al. (1985, §10.54�) and Biber (1995).

analytic no, not

contractions

n’t, ain’t, aren’t, arent, aren’t, can’t, cannot, cant,

couldn’t,, didn’t, doesn’t, don’t, hadn’t, hasn’t, haven’t,

isn’t, mightn’t, mustn’t, shouldn’t, wasn’t,, weren’t, won’t,

wouldn’t

constructional neither, never, nor, none, nobody, no-one, without, sans, w/o
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Contextualized language models for semantic change detection:

lessons learned
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Abstract We present a qualitative analysis of the (potentially erroneous) outputs of contextualized embedding-based methods for

detecting diachronic semantic change. First, we introduce an ensemble method outperforming previously described contextualized

approaches. This method is used as a basis for an in-depth analysis of the degrees of semantic change predicted for English words

across 5 decades. Our findings show that contextualized methods can o�en predict high change scores for words which are not

undergoing any real diachronic semantic shi� in the lexicographic sense of the term (or at least the status of these shi�s is question-

able). Such challenging cases are discussed in detail with examples, and their linguistic categorization is proposed. Our conclusion is

that pre-trained contextualized language models are prone to confound changes in lexicographic senses and changes in contextual

variance, which naturally stem from their distributional nature, but is di�erent from the types of issues observed in methods based

on static embeddings. Additionally, they o�en merge together syntactic and semantic aspects of lexical entities. We propose a range

of possible future solutions to these issues.

1 Introduction
Lexical semantic change detection (LSCD) is a rela-

tively recent sub-field within natural language process-

ing. However, comprehensive surveys of data-driven

modeling of diachronic semantic change are already

available (Tang, 2018; Kutuzov et al., 2018; Tahmasebi

et al., 2021a). Dedicated workshops on computational

approaches to historical language change took place

at the ACL conferences (Tahmasebi et al., 2019, 2021b,

2022) and the results of the SemEval-2020 Task 1 on

unsupervised lexical semantic change detection were

announced in March 2020 (Schlechtweg et al., 2020).

Shared tasks for other languages followed soon (Basile

et al., 2020; Kutuzov and Pivovarova, 2021).

The majority of the SemEval-2020 shared task par-

ticipants employed methods based on word embed-

dings of various types. About half of them tried to

make use of contextualized (‘token-based’) architec-

tures like ELMo (Peters et al., 2018a) or BERT (De-

vlin et al., 2019). Although the winning systems still

used non-contextualized (‘static’ or ‘type-based’) em-

beddings like word2vec (Mikolov et al., 2013), the di�er-

ence in scores was not dramatic and we are most likely

going to see more work in this direction. We agree with

Schlechtweg et al. (2020) that as the contextualizing

technologies mature, there will be a be�er understand-

ing of how to properly use them for semantic change

related tasks. Indeed, at the RuShi�Eval shared task on

LSCD for Russian (Kutuzov and Pivovarova, 2021), the

leader-board was already dominated by contextualized

models.

The current paper aims to contribute to this im-

proved understanding by qualitatively analyzing the

output of contextualized embedding-based approaches

to the diachronic semantic change detection task.

Hence, our work falls into the second category of

ground truth semantic change evaluation, as defined by

Hengchen et al. (2021): what is evaluated is the ranked

output of the methods under investigation.

We here focus on Subtask 2 of SemEval-2020 Task 1:

to rank a list of words by the degree of their seman-

tic change between two historical corpora belonging to

di�erent time bins. The submissions were evaluated

by their Spearman rank correlation against human an-

notations. This task was o�ered for four languages,

each with their own word list and corpora: English,

German, Latin and Swedish. One of the submissions

in this Subtask was delivered by the UiO-UvA team

(Kutuzov and Giulianelli, 2020). It used pre-trained

ELMo models and achieved the average score of 0.37

at the evaluation phase (the second best contextual-
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ized embedding-based system in this phase), and 0.62

at the post-evaluation phase (the best result overall in

this phase). We chose their methods for closer inspec-

tion, because the implementations were publicly avail-

able, and the methods themselves are quite typical for

the semantic change detection field (see below).

The contributions of this paper are twofold:

1. We propose a simple improvement to the ap-

proach in Kutuzov and Giulianelli (2020) by en-

sembling two of their best-performing methods.

We show that it avoids the necessity to decide

what method to choose, while still outperform-

ing strong baselines.

2. We qualitatively examine the output of the con-

textualized methods for semantic change detec-

tion in English. We analyze examples of both

correct and incorrect cases of detected semantic

change. The la�er findings are arguably more im-

portant for future studies, as one learns on errors.

We propose a categorization of such problematic

cases, relating them to inherent properties of pre-

trained contextualized architectures in particular

and distributional approaches in general.

2 Contextualized methods for
detecting semantic change

Two methods for estimating semantic change were pro-

posed in Kutuzov and Giulianelli (2020): PRT and APD

(further detailed below). The methods are architecture-

agnostic and can be used with any model able to pro-

duce contextualized token representations for a given

sequence of word tokens. Overall, these methods can

be considered typical representatives of using contex-

tualized word embeddings for the task of semantic

change detection: they boil down to directly compar-

ing token embeddings of the target word in two periods;

see (Martinc et al., 2020a) for a similar technique. An-

other possible approach (which we hope to analyze in

the future) is clustering token embeddings into groups

loosely corresponding to word senses and then com-

paring their time-specific distributions (Martinc et al.,

2020b; Cuba Gyllensten et al., 2020; Giulianelli et al.,

2020).

The common part of both the PRT and APD meth-

ods is as follows. Given two time periods C1 and C2, two

corresponding corpora �1 and �2, and a set of target

words, a language model (regardless of what it has been

pre-trained on) is used to obtain contextualized token

embeddings
1

of each occurrence of the target words in

1
Representations from the top layer of the model were used, since

they yielded the best results according to Kutuzov and Giulianelli

(2020).

�1 and �2. Each target word F is then represented by

two ‘usage matrices’ UC1
F and UC2

F consisting of all to-

ken embeddings produced forF . A change score is com-

puted from these matrices, indicating the degree of se-

mantic change undergone by a word between C1 and C2.

The target words are ranked by this value. The methods

di�er in how exactly change scores are computed:

• Inverted cosine similarity over word proto-
types (PRT): the degree of change for F is cal-

culated as the inverted cosine similarity between

the average token embeddings (‘prototypes’) of

allF occurrences in UC1
F and UC2

F correspondingly:

PRT
(
UC1
F,U

C2
F

)
=

1

2
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#
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x9 ∈U
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x9

#
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where #
C1
F and #

C2
F are the numbers of occur-

rences of F in time periods C1 and C2, and 2 is a

similarity metric, for which we use cosine simi-

larity. High PRT values indicate a higher degree

of semantic change.

• Average pairwise cosine distance between
token embeddings (APD): the degree of change

for F is measured as the average distance be-

tween all possible pairs of token embeddings in

UC1
F and UC2

F :

APD
(
UC1
F,U

C2
F

)
=

1
#

C1
F · # C2

F

∑
x8 ∈UC1

F , x9 ∈UC2
F

3
(
x8 , x9

)
(2)

where 3 is the cosine distance (1 − 2 where 2 is

cosine similarity). High APD values indicate a

higher degree of semantic change.

Kutuzov and Giulianelli (2020) report that di�erent

test sets from the shared task manifested strong pref-

erence for either the PRT or the APD method, and that

this is correlated with the distribution of gold scores

in the test set (but not with its language). If the right

method was chosen, then using contextualized embed-

dings to rank words by their degree of semantic change

consistently outperformed the shared task baselines

(frequency-based and count-based approaches) and the

methods relying on type-based embeddings with or-

thogonal alignment (Hamilton et al., 2016a).

However, in a realistic se�ing it is obviously prob-

lematic to assume knowledge of the statistical proper-

ties of the target words beforehand. So, how should one

choose between the PRT and APD methods? We found

that simply averaging the PRT and APD estimates

yields very robust predictions. In Table 1, we reproduce

the results from Kutuzov and Giulianelli (2020), includ-

ing the word2vec baseline, and add the ‘PRT/APD’ row
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Method English German Latin Swedish GEMS Average

SemEval-2020 Task 1 baselines

FD (frequency di�erence) -0.217 0.014 0.020 -0.150 0.068 0.094

CNT+CI+CD (count-based) 0.022 0.216 0.359* -0.022 0.256* 0.166

Cosine distance with static embeddings (word2vec)
Orthogonal Procrustes alignment 0.285 0.439* 0.387* 0.458* 0.235* 0.361

Contextualized embeddings

BERT PRT 0.225 0.590* 0.561* 0.185 0.394* 0.391

BERT APD 0.546* 0.427* 0.372* 0.254 0.243* 0.368

BERT PRT/APD 0.498* 0.537* 0.431* 0.267 0.332* 0.413

ELMo PRT 0.254 0.740* 0.360* 0.252 0.323* 0.386

ELMo APD 0.605* 0.560* -0.113 0.569* 0.323* 0.389

ELMo PRT/APD 0.546* 0.678* 0.036 0.546* 0.360* 0.433

Inter-correlations between ELMo PRT and APD predictions
Spearman’s d 0.589* 0.655* 0.423* 0.538* 0.319* 0.505

Pearson’s r 0.547* 0.656* 0.589* 0.698* 0.495* 0.597

Table 1: Spearman correlation with the gold standard per test set for the best methods from (Kutuzov and Giulianelli,

2020) and our PRT/APD ensemble approach. ‘*’ denotes statistical significance of the correlation as measured by the

two-sided p-value, ? < 0.05.

with the scores we got using the ensemble approach.

Note that in addition to the 4 shared task test sets,

we also report results on the GEMS semantic change

test set for English (Gulordava and Baroni, 2011). For

individual test sets, the performance of PRT/APD usu-

ally lies in between PRT and APD, but when averaged

over all five test sets, it ranks higher than any individ-

ual method, and this e�ect holds for both ELMo and

BERT, with the best result yielded by ELMo. When

compared to the shared task leader-board (Schlechtweg

et al., 2020), the PRT/APD + ELMo combination outper-

forms all contextualized embedding-based systems in

Subtask 2, supporting the same observation in (Kutu-

zov and Giulianelli, 2020).

Thus, the APD and PRT methods are complimen-

tary, although their predictions are strongly correlated

(see the bo�om of Table 1). Together they act as a top-

performing ensemble of the models, with the additional

benefit of not having to worry about what method

to choose. In the rest of this paper, we will use the

PRT/APD method to produce semantic change scores

for qualitative analysis. Note that since these scores

are produced by an ensemble model, they are less inter-

pretable than the original separate PRT and APD val-

ues. However, a manual inspection showed that the

separate methods yield the same categories of errors

as the combined score; see Section 5 below.

3 Data and models used
For our in-depth analysis of the results, we use textual

data from the Corpus of Historical American English or

COHA (Davies, 2012) (it is certainly desirable to repro-

duce this analysis for other languages, which we leave

for future work). In particular, we deal with 5 COHA

sub-corpora corresponding to five decades: the 1960s,

1970s, 1980s, 1990s and 2000s. Note that this setup is

slightly di�erent from the SemEval-2020 Task 1 in that

we have a sequence of five time bins. With this, we

aim to trace the lasting evolution of word meaning, not

limited to changes between two time periods. The em-

ployed time span means we deal with relatively short-

term meaning changes.

We chose ELMo as a contextualizer based on its bet-

ter performance (Table 1) and much lower computa-

tional requirements than BERT. It allowed us to train

a single model from scratch on the concatenation of all

COHA texts belonging to the five decades mentioned

above (the full corpus size is about 127 million word

tokens, and we trained for 5 epochs). The texts were

tokenized and lemmatized with the English UDPipe

tagger trained on the Universal Dependencies 2.3 tree-

bank (Straka and Straková, 2017), discarding punctua-

tion marks and lower-casing all words.

The list of words to analyze is a concatenation of all

words from the SemEval-2020 Task 1 English test set,

all words from the GEMS test set, and 1000 randomly

sampled words occurring in all five COHA sub-corpora

with frequency in each sub-corpus higher than 100. Af-
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ter excluding numerals, function words and the words

with a total frequency of less than 1000 occurrences

across all decades (to discard unstable representations

of rare words), the resulting word list contains 690 en-

tries. For each of them, we used our ELMo model to

calculate their PRT/APD scores in the four consecutive

pairs of the COHA decades (1960s–1970s, 1970s–1980s,

1980s–1990s, 1990s–2000s), thus producing a score ma-

trix M ∈ R690×4. Below we examine the actual scores

in this matrix, and how they are related to processes in

the recent history of English.

4 Well-behaved examples
For many words, the scores do signal real changes,

like a new emergent sense. Let us consider the word

‘cell’ as an example. The dataset from Tsakalidis et al.

(2019), based on the Oxford English Dictionary defini-

tions, mentions it as having acquired a new sense of

‘mobile phone’ a�er 2000. Recall that PRT/APD pro-

duces as an output a measure of how strong the se-

mantic change of a target word was between two time

bins; this measure characterizes a pair of decades in our

case. ‘Cell’ received a change coe�icient of 0.673 for the

1960–1970 pair (arguably corresponding to the start of

its widespread usage in the biological sense).

A�er that, the estimated degrees of change were

smaller, with 0.669 for 1970–1980s and 0.672 for 1980–

1990s. However, 1990–2000s had a change coe�icient of

0.695 (the highest for this word across all decades), most

likely reflecting the new ‘mobile phone’ sense. As a side

note, it might look like the PRT/APD values show very

li�le variation: in fact the average standard deviation of

M values across four time period pairs is 0.04, with the

average PRT/APD value being about 0.70. This means

that the change coe�icients for ‘cell’ are actually lower

than the mean value in our dataset (z-score of 0.695 is

−0.17). See more on this in the next Section 5.

Unlike the static word embedding approaches, us-

ing contextualized models allows one to visually explore

the individual occurrences of a given word in di�erent

senses. For this purpose, we use Principal Component

Analysis (PCA) to reduce the contextualized token em-

beddings of ‘cell’ in our diachronic sub-corpora to their

2-dimensional projections. Figure 1 shows these projec-

tions for the decades from the 1970s through the 2000s.

Even at a glance, it is possible to see that in the

2000s, some radical changes in the groupings of the

‘cell’ token embeddings occurred. The three previous

decades are all characterized by a rather vague separa-

tion of this word’s usages into two clusters (at the le�

and at the right part of the vector space). In the 2000s,

we observe the appearance of a new cluster: now there

are two strong clusters to the le� and a third one to the

right. But what senses do these clusters correspond to?

Figure 1: PCA projections of contextualized token em-

beddings of ‘cell’ in four di�erent decades.

Fortunately, since each point on the plot represents a

particular ‘cell’ occurrence from a particular decade’s

sub-corpus, we can retrieve their corpus contexts and

manually inspect them. Of course, we did not inspect

all occurrences: both due to their amount (thousands)

and due to the absence of clear-cut cluster boundaries.

Instead, we randomly sampled about 20 occurrences

from the core area of each apparent cluster and exam-

ined them.
2

We observe that in the 1970s, 1980s and 1990s, the

right-hand cluster mostly contains sentences with ‘cell’
in the sense of ‘prison cell’, see example 1:

(1) 1. ‘I’d known Archie Meltzer, the chief

turnkey on duty, for over ten years, but

you wouldn’t have known it from the way

he processed me for the cells.’

2. ‘It also happened to me in a jail cell.’

3. ‘If she had been writing to somebody in

the darkness of her prison cell, what had

she done with the message?’

The le� cluster (stably increasing its relative size

over time) mostly contains sentences with ‘cell’ in the

biological sense, with examples given in 2.

(2) 1. ‘The sexual cells of Pyronema show this in

ascomycetes.’

2. ‘It’s how a cell decides whether it becomes

a muscle cell or a skin cell.’
2
The same method is used below throughout the paper. In all

cases when visible clusters appeared in the projections, they were

strongly consistent, with at least 90% of the randomly sampled data

points in a cluster belonging to a particular sense.
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Figure 2: PCA projection of ELMo token representa-

tions of each occurrence of the word ‘cell’ in the 2000s,

with clusters labeled with senses.

3. ‘If those cells are found to be cancerous

a�er being sent to a lab, that’s a definite

diagnosis.’

A�er exploring the points in the 2000s plot in the

same way, one observes that the two clusters on the

le� correspond to the old senses of ‘cell’ (biological still

at the bo�om and prison at the top). But the new large

cluster on the right almost exclusively consists of sen-

tences mentioning ‘cell’ in the sense of ‘mobile phone’

(see examples in 3 and Figure 2 displaying these clus-

ters with labels).

(3) 1. ‘But how well do the service providers

fulfill that objective, and what about the

other health and safety risks - exposure to

radio waves and potentially fatal driver

distraction - that the growing use of cell
phones raise?’

2. ‘…he walked past, nearly dislodging the

cell phone she had balanced between her

chin and her le� shoulder.’

3. ‘You still have the same cell number.’

One can also visualize token embeddings for ‘cell’
across all five time bins in one plot, as shown in Fig-

ure 3. Here, PCA dimensionality reduction is performed

for all occurrences of this word (about 7500 total), and

thus we can see how usages from di�erent decades

(shown in di�erent colors) are grouped in relation to

each other. The top right cluster is inhabited almost ex-

clusively with the occurrences from the 2000s and to a

Figure 3: PCA projection of contextualized token em-

beddings of ‘cell’ in all 5 COHA decades. Colors corre-

spond to time periods.

less extent the 1990s. Not surprisingly, it contains sen-

tences where ‘cell’ is used in the ‘mobile phone’ sense.

At the same time, in other parts of the plot, occurrences

from all decades are distributed more or less uniformly,

supporting our previous observation that in the 1960s,

1970s and 1980s, this word did not experience signifi-

cant semantic changes.

In the case of ‘cell’, the groupings of contextualized

representations and the detected changes are undoubt-

edly connected to a new sense emerging (thus, a di-

achronic semantic shi�). The relations between di�er-

ent senses of ‘cell’ fall into the category of homonymy,

where word senses are not directly related to each other

(at least, synchronically). However, one can trace the

cases of polysemy as well, where senses are synchron-

ically related to each other. As an example, let us look

at the adjective ‘virtual’. It experienced its strongest

change of 0.769 in the 1980–1990 pair (its z-score is 1.9
in the full M).

Before 1990s, ‘virtual’ was used mostly in two

closely related senses: ‘being such in essence or effect

though not formally recognized or admitted’ (major one)

and ‘related to a hypothetical particle whose existence is

inferred from indirect evidence’ (minor).
3

However, the

1990s saw the emergence of a large number of ‘virtual’
usages in the sense of ‘simulated on a computer or com-

3
The definitions are taken from the Merriam-Webster dictionary

(https://www.merriam-webster.com/).
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Figure 4: PCA projection of contextualized token em-

beddings of ‘virtual’ in all 5 COHA decades.

puter network’, especially in the expression ‘virtual re-

ality’ (almost one third of all usages). This sense is re-

lated to the previous ones, thus manifesting a case of

polysemy. The emergence of a new related sense in the

1990s is captured by contextualized embedding based

methods, producing a higher change score for this time

bin in comparison to the previous 1980s decade. We

can also observe a much weaker change score of 0.740

in the 1990–2000 pair. The manual inspection of the

occurrences shows that in the 2000s, ‘virtual’ was still

used a lot in this new third sense (interestingly, the ‘vir-

tual reality’ expression itself almost came out of usage,

constituting now only 6% of all ‘virtual’ occurrences).

On the plot of ‘virtual’ token embeddings across five

COHA decades (Figure 4), the ‘simulated on a computer

or computer network’ usages occupy the le� part of the

plot, with the ‘virtual reality’ phrases concentrated in

the le� top corner (as confirmed by manual inspec-

tion). The le� part contains almost exclusively the oc-

currences from the 1990s and from the 2000s, while the

le� top corner is dominated by the 1990s.

So far so good: the contextualized embedding-

based methods not only demonstrate high performance

on the evaluation sets, they also produce interpretable

predictions corresponding to well-known diachronic se-

mantic shi�s. But let us also look at a darker side of the

M score matrix.

Word Decade pair Change z-score

‘banish’ 1980s–1990s 0.794 2.60

‘designate’ 1980s–1990s 0.792 2.54

‘mg’ (m/gram) 1980s–1990s 0.791 2.52

‘progressive’ 1990s–2000s 0.782 2.27

‘indirectly’ 1990s–2000s 0.780 2.21

‘form’ 1990s–2000s 0.780 2.21

‘subsequently’ 1980s–1990s 0.780 2.21

‘neutral’ 1990s–2000s 0.779 2.18

‘traditionally’ 1990s–2000s 0.779 2.18

‘pointed ’ 1960s–1970s 0.778 2.16

Table 2: 10 points with the highest change scores in 5

decades of COHA (as measured by PRT/APD). Z-scores

are computed on the full M. Word color indicates its

class, see Section 5.

5 Problematic examples
The picture is not as clear if one gets beyond hand-

picked well-behaved examples. As mentioned above,

the change coe�icient of ‘virtual’ when comparing the

1990s to the 1980s was 0.769. But the absolute values

(and even z-scores) here are not very informative. There

is no well-defined threshold: it is not the case that the

change coe�icients higher than, say, 0.7 always corre-

spond to some breaking points in the word evolution.

There are much stronger bursts which do not yield to

such an explanation. Table 2 lists 10 words with the

highest change coe�icients in M. As can be seen, these

changes are indeed unusually strong, all of them being

more than 2 standard deviations away from the mean

change score. However, none of them can be immedi-

ately interpreted as acquiring or losing a sense. What

is the cause of these bursts?

5.1 Categories of problematic examples
Indeed, none of the 10 words with the highest scores

is a schoolbook example of a semantic shi�. We em-

phasize it does not necessarily imply outright errors

or ‘false positives’. As we show below, a good part of

these words in fact do have reasons to be assigned high

change scores; it is just that these reasons are some-

what di�erent from what a historical linguist would ex-

pect to see.

Looking closely at these cases reveals three general

word classes which trigger high semantic change score

as measured by the PRT/APD approach, but at the same

time did not undergo any semantic shi�s in the clas-

sic understanding of the term (Bloomfield, 1933). The

classes are (colors correspond to those in Table 2):
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1. Words of strongly context-dependent meaning

(‘designate’, ‘progressive’, etc): their token embed-

dings are very di�erent from each other (and thus

change scores are high) when compared either

synchronically or diachronically.

2. Words frequently used in a very specific context

in a particular time bin, di�erent from other pe-

riods (‘mg’, ‘indirectly’, etc). It can be looked at

either as a result of (unintended) domain shi�-

ing when building a corpus or as contextual vari-

ance which really exists in language, but did not

yet lead to the emergence of a new lexicographic

sense (or losing an old one). Note that Shoe-

mark et al. (2019) observed very similar phenom-

ena when analyzing Twi�er data with static word

embeddings. We will also call such cases ‘data

bursts’. There is an interesting sub-type of this

class:

• words used as a proper name in a partic-

ular time bin (‘banish’, etc.); this leads to

extremely high contextual variance and the

emergence of isolated token clusters.

3. Words undergoing syntactic changes, not seman-

tic ones; see below.

Note that the assignment of data points to classes

in Table 2 was not done as a part of a full-fledged anno-

tation e�ort with pre-defined error categories. Rather,

this is a product of qualitative error analysis conducted

by the authors: that is, the classes were identified as an

a�empt to group and systematize the problematic pre-

dictions of the methods used. We by any means do not

claim that this grouping is the only one possible; how-

ever, as shown below, it models the data well enough to

produce meaningful insights.

We remind the reader that the change coe�icients

were produced by the ensemble PRT/APD method.

However, the PRT and APD methods on their own suf-

fer from the same categories of problems. We analyzed

10 words with the highest estimated degree of change

for the separate methods as well, and found them to

largely overlap with those produced by PRT/APD; see

Table 3. For APD, 60% of the points are the same words

as for PRT/APD, for PRT it is 20%, but these two words

are at the top of the list.
4

An interesting observation is that each separate

method tends to ‘favor’ di�erent classes of problematic

examples: while for PRT, seven words out of the top

10 are cases of data bursts (including the proper name

subclass), for APD, nine of the top 10 are words with

4
Spearman d correlation between predictions of APD and PRT on

M varies from 0.19 to 0.34, depending on a particular pair of decades;

for Pearson, it is from 0.13 to 0.16; all the correlations are statistically

significant.

PRT (score) Bin APD (score) Bin

‘mg’ (1.17) 1990s ‘designate’ (0.57) 2000s

‘banish’ (1.11) 1990s ‘progressive’ (0.56) 2000s

‘don’ (1.11) 1980s ‘form’ (0.56) 2000s

‘crunch’ (1.07) 1970s ‘subsequently’ (0.55) 1970s

‘immune’ (1.07) 1980s ‘lead ’ (0.55) 1990s

‘clayton’ (1.07) 1970s ‘traditionally’ (0.55) 2000s

‘norm’ (1.06) 1970s ‘pointed ’ (0.55) 1970s

‘brian’ (1.06) 1970s ‘truly’ (0.55) 2000s

‘ian’ (1.06) 1980s ‘mere’ (0.55) 2000s

‘sequence’ (1.06) 2000s ‘savage’ (0.55) 2000s

Table 3: 10 points of the strongest change in 5 decades

of COHA, as measured separately by PRT and APD.

Word color indicates its class, see Section 5. ‘Bin’

columns denote the decade when the change occurred.

strongly context-dependent meaning. The PRT/APD

method yields a more balanced distribution of these

two classes (each takes approximately half of the top

10 list): this is arguably one of the reasons for its higher

empirical performance. This aligns well with the as-

sumption about the complementary nature of PRT and

APD that we already mentioned before. The analysis of

the reasons for this behavior is an interesting topic for

future studies.

As a side note, two words predicted as changed by

the PRT method do not fall into any of our categories:

‘don’ and ‘immune’. ‘Don’ stems from what seems to

be a corpus pre-processing issue on the COHA side: in

the 1980s sub-corpus of COHA, the frequency of ‘don’t’
tokenized as ‘don ’ t’ (with two spaces) is two orders of

magnitude higher than in the other decades. This leads

to the appearance of a very distinct ‘don’ cluster in this

time bin. For ‘immune’, we observe that in the 1980s,

it starts being actively used in the phrase ‘immune sys-
tem’, again forming a separate cluster. This is not a tem-

porary data burst, since it continued in the 1990s and in

the 2000s. The dynamics of ‘immune’ is arguably related

to the discovery of the HIV virus in the beginning of the

1980s, and thus, it can (cautiously) be acknowledged as

a well-behaved example, not a problematic one. But let

us return to the PRT/APD predictions.

Figure 5 shows the PCA projections of token embed-

dings for four of the words from Table 2 across the five

COHA decades. Below we describe these diachronic

vector spaces more closely to explain the nature of each

category of ‘problematic’ words.

‘Progressive’ (in the bo�om le� part of the plot)

belongs to the 1st class and presents the easiest case

to explain. As can be seen from the plot, the occur-

rences from all five decades are spread uniformly over
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Figure 5: PCA projections of token embeddings for

‘banish’, ‘mg’, ‘progressive’ and ‘indirectly’ across all 5

COHA decades.

the vector space. There are no regions inhabited by oc-

currences only from some subset of the decades. This

means no sense was acquired or lost at any point in

time. The reason for the high absolute value of the

change score is the context-dependent meaning of the

word itself. Actually, it featured high change scores in

all the previous decade pairs as well: 0.781, 0.780, 0.778.

Its contexts are so diverse and ‘fluid’ that PRT/APD de-

tects strong change whatever corpora are under com-

parison. In this respect, ‘progressive’, ‘designate’, ‘form’

and similar entries behave much like function words:

their contextualized embeddings are in a constant flux.

Such cases can be traced and discarded when we have a

sequence of several time bins clearly showing the con-

stant character of the changes. However, if looking at

one pair of time bins only (like in the SemEval 2020 Task

1), a researcher can be mistaken into concluding that an

actual semantic shi� is undergoing here.

‘Indirectly’ and ‘mg’ (bo�om and top right parts of

the plot correspondingly) belong to the 2nd class and

they do reflect some actual changes in the corpora. The

plot for ‘indirectly’ features a small cluster of the 1990s

occurrences in the top le� corner. Otherwise, the occur-

rences from di�erent time bins are spread uniformly, so

this must be the reason of the detected ‘change’. In-

deed, for this word we find high change coe�icients

both for the 1990s (0.779) and the 2000s (0.780), while

before that the scores were much lower. Accordingly,

something had happened to ‘indirectly’ in the 1990s and

then arguably went back to normal in the 2000s. Man-

ual inspection of the 1990s-specific cluster reveals sen-

tences like those in example 4:

(4) 1. ‘Lane now holds 1,966,692 shares directly

and indirectly, worth $ 17,700,228.’

2. ‘Parshall now holds 300 Class A shares

indirectly, worth $ 3,975.’

All of them are excerpts from a long text titled

‘Depressed shares are a hit with bargain-hunting ex-

ecs Banks, utilities among winners’, apparently pub-

lished in the ‘Insider trading’ magazine in 1994. It

abounds with reports on various persons holding var-

ious amounts of shares directly or indirectly. This type

of texts is unusual for COHA: there are no sentences

mentioning both ‘hold ’ and ‘indirectly’ simultaneously

in other decades, except only one such sentence in the

1980s. Meanwhile, the 1990s sub-corpus has 27 of them

(the size of the outlier cluster we see in the plot). The

2000s sub-corpus does not include such texts any more,

and thus we observe an equally strong change back

when moving from the 1990s to the 2000s.

For the word ‘mg’ (milligram) the situation is sim-

ilar, except that the change score of 0.792 in the 1990s

was the only burst (for other decade pairs, the change

scores do not exceed 0.71). It means that something

changed in the 1990s and stayed like this through the

2000s. Inspecting Figure 5 (top right plot) shows that

there is indeed a clearly separated cluster consisting

only of the 1990s and 2000s tokens. In the corpus, they

always occur in the phrase ‘mg cholesterol’, in sentences

like in example 5, being part of dish recipes.

(5) ‘Per serving: 525 calories, 34 gm protein, … 674

mg cholesterol, 6 gm saturated fat, 409 mg

sodium’,

‘Cholesterol’ did occur in COHA before the 1990s,

but never in such a context (123 occurrences of ‘mg
cholesterol’ in the 2000s, 128 in the 1990s, and 0 before

that).

In these cases, no semantic shi�s in the main-

stream sense of this term occurred: the word ‘indi-
rectly’ still had the same general meaning in the 1990s,

and the word ‘mg’ in the 1990s and 2000s. However,

the PRT/APD method indeed detected anomalous con-

textual variances in the corpora under analysis. An-

other interesting case belonging to this type is the word

‘neutral’, also appearing in Table 2. Its 2000s burst is

caused by the emergence of the frequent collocation

‘gender neutral’, which is missing (or extremely rare) in

the previous decades. Are we observing a new sense

gradually appearing, or is it just contextual fluctuation?

Anyway, independent of whether these variances are
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due to real changes in the word usage (caused by so-

cial and cultural developments) or due to improper cor-

pus collection procedure, they are still really existing

bursts in the data. In this respect, this type of con-

troversial predicted changes is di�erent from ‘progres-
sive’ or ‘designate’. This is another manifestation of a

larger NLP problem of domain sensitivity (Okurowski,

1993). Essentially, what the model detected was a do-

main change in comparison to overall genre structure

of COHA.

Finally, the word ‘Banish’ belongs to the proper

names subset of the 2nd class. It features a clearly sep-

arated cluster of token embeddings containing exclu-

sively the 1990s occurrences (bo�om of the plot). All

of them are mentions of ‘Banish’ as the name of one

of the characters of the 1996 novel ‘The Stando�’ by

Chuck Hogan, see example 6:

(6) 1. ‘Banish slipped deeper into thought.’

2. ‘Banish smiled weakly at the sentiment.’

3. ‘The sound man eyed him as he stepped

inside, saying nothing about Banish’s
burnt face.’

The novel is included in COHA almost in its entirety,

obviously bringing in a lot of ‘banish’ usages very di�er-

ent from its mainstream verbal meaning (recall that we

both lemmatize and lower-case our texts). This leads

to the high change coe�icients in the 1980–1990 pair:

0.794, a strong burst compared to 0.733 (1960s–1970s)

and 0.730 (1970s–1980s). Note that the change score is

high again when looking at the 1990–2000 pair (0.793).

The obvious reason is that the 2000s corpus does not

mention Banish from ‘The Stando�’ at all, so the mean-

ing of ‘banish’ has returned to its pre-1990s state (more

or less equally distributed between the senses of ‘to ex-

pel’ and ‘to destroy, to end’).

Using ‘Banish’ in this way is certainly creative, and

even more importantly, these occurrences indeed de-

note something di�erent from the regular meaning of

‘banish’. It can be disputed whether using a verb (or a

common noun) as a proper name is coining a new sense.

Note, however, that a very similar case of the word ‘ap-
ple’ acquiring the new sense of a well-known company

proper name is o�en used as a classic example for word

sense disambiguation (Manion, 2014). From this point

of view, ‘banish’ certainly temporarily acquired a new

sense in the COHA 1990s corpus, and thus the predicted

change score perfectly reflects the reality. On the other

hand, one could argue that this is true for the title-cased

‘Banish’ only, but yielding high change score for ‘ban-
ish’ is an error. See more on that in subsection 5.4.

During our manual analysis (following the same

workflow of randomly sampling and examining about

20 usages from the core area of the cluster) we also ob-

served multiple cases where token embedding clusters

Figure 6: PCA projections of token embeddings for

‘phone’ in four di�erent decades: stable syntactic clus-

ters.

of an unambiguous word manifested this word being

used in di�erent syntactic roles. For example, the word

‘phone’ features three clusters of token embeddings,

stable across time (Figure 6). They group occurrences

not on semantic, but more on syntactic grounds:

1. ‘phone’ is a subject: ‘Then the phone rang.’ (the

top cluster)

2. ‘phone’ is an object or an oblique argument:

‘…took a deep breath and grabbed the phone.’

(the bo�om le� cluster)

3. ‘phone’ is a modifier part of a compound noun:

‘Please include a daytime phone number.’ (the

bo�om right cluster)

This constitutes the 3rd class of problematic change

predictions. If the syntactic role frequency distribu-

tion of a particular word changes diachronically, the

change detection methods based on contextualized em-

beddings would be triggered by this. As a result, a syn-

tactic shi� will be taken for a semantic one. ‘Tradition-
ally’ from Table 2 is such an example: for some reason,

the 1990s COHA sub-corpus contains much fewer us-

ages of this word as an adjective modifier (‘tradition-
ally christian’, ‘traditionally male’, etc) than the other

decades. Interestingly, this syntactic influence is ex-

pressed even though we extracted representations from

the top layer of ELMo, which was shown by Peters et al.

(2018b) to mostly contain semantic information. We dis-

cuss the possible smarter ways to employ the model

layers in the subsection 5.4 below.
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Word Decade pair Change z-score

‘drew’ 1960s–1970s 0.892 4.19

‘banish’ 1980s–1990s 0.836 3.71

‘jessica’ 1960s–1970s 0.823 3.59

‘fanny’ 1960s–1970s 0.811 3.49

‘clayton’ 1970s–1980s 0.801 3.41

‘val’ 1970s–1980s 0.798 3.39

‘chris’ 1960s–1970s 0.790 3.32

‘max’ 1980s–1990s 0.760 3.07

‘joel’ 1980s–1990s 0.758 3.04

‘josh’ 1980s–1990s 0.743 2.92

Table 4: 10 points of the strongest change in 5 decades

of COHA (as measured with static word embeddings).

5.2 What about static embeddings?
It can be argued that the issues mentioned above

are not specific for contextualized architectures. To

test this, we trained five static embedding models on

five COHA sub-corpora each representing one of the

decades (1960, 1970, 1980, 1990, 2000). We employed the

widely used skip-gram with negative sampling (SGNS)

algorithm from Mikolov et al. (2013), also known as

word2vec. The training hyperparameters were set as

follows: symmetric context window of 10 words to the

right and 10 words to the le�, minimal word frequency

5, vector size 300, 10 iterations over the corpus. Then we

followed the standard semantic change detection work-

flow (so called ‘SGNS+OP’) :

1. Vector matrices of each model were aligned to

the 2000s matrix with the Orthogonal Procrustes

(OP) transformation (Hamilton et al., 2016b); the

2000s decade was chosen as the basis for align-

ment, since this model has the largest vocabulary

(65 246 words).

2. For each target word, the cosine distances be-

tween its aligned static embeddings in the four

consecutive pairs of the COHA decades were cal-

culated. This resulted in the MBC0C82 ∈ R690×4 ma-

trix, analogous to the M matrix for ELMo embed-

dings. The values in MBC0C82 are change scores in-

ferred from the word2vec models.

Top ten change scores in MBC0C82 are shown in Ta-

ble 4. Again, none of these words looks like an example

of a genuine semantic shi�, although their z-scores are

even higher than those in Table 2. The important thing

is that we observe only two words which also appeared

at the top of M: ‘banish’ (PRT/APD and PRT) and ‘clay-
ton’ (PRT). Since static architectures do not yield token

embeddings, one cannot analyze the underlying rea-

sons for high change scores, as we did in the previous

subsection. However, it is obvious that most (if not all)

words at the top of MBC0C82 are proper nouns, which is

fully in line with the findings in (Shoemark et al., 2019).

This makes the predictions of the static models a bit

more similar to those produced with the PRT method

(which makes sense, since both PRT and static embed-

dings ‘merge’ all occurrences of a word into a single vec-

tor representation), but still substantially di�erent from

what any tested contextualized approach yields.

To some extent, the SGNS-OP predictions are po-

tentially easier for ‘de-noising’: one simply has to filter

out proper names, which is technically straightforward.

Anyway, the take-away message here is that the ma-

jority of the problematic examples’ categories we men-

tioned above indeed seem to be specific to contextu-

alized architectures and not manifested in approaches

based on static embeddings (which can have their own

issues, of course).

5.3 Summarizing reflections
Although contextualized architectures are indeed

promising for the tracing of diachronic semantic

change (especially for finding supporting examples

from the corpus), their usage is not entirely straightfor-

ward. When measuring the strength of lexical semantic

change with contextualized embeddings, one should

watch out for the three classes (and one sub-class)

of possible unexpected results described above. A

word occurrence can receive a very di�erent token

embedding not because the word has acquired a new

sense, but because it is used in an unusual syntactic

role, or because it is surrounded by unusual neighbors

(for example, when the domain of the underlying texts

has changed). Since the resulting semantic change

score is a derivative of the arrays of token embeddings,

one observes strong bursts which manifest changes

in contextual variance of a word, not a semantic shi�

in the lexicographic meaning of this term. This is

probably not what a historical linguist expects to see,

although it can depend on the particular study and the

working definition of ‘semantic shi�’.

Note that the problems described here are not en-

tirely novel and have been discussed before in semantic

change literature. They are also related to complicated

questions about the nature of meaning and of what ex-

actly it means to undergo a ‘semantic shi�’, especially

when we observe a case of contextual variance. If we

stick to the distributional view that ‘senses are in fact

clusters of corpus usages’ (Kilgarri�, 1997), the cases

described above should definitely count as sense inven-

tory changes, or at least the appearance of short-term

senses which then fade away. If one does not employ

external data sources (like ontologies or diachronic dic-
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tionaries), there is no reliable way to discern ‘seman-

tic changes’ from ‘di�erences in the underlying textual

data’: they are simply the same thing.

All this is an inevitable consequence of accepting

the data-driven distributional paradigm. It can be ar-

gued that any distributional corpus-based model suf-

fers from these problems by definition, simply because

it derives its signal from contexts surrounding word to-

kens. In fact, the ‘clusters’ on the plots in this section

can be more properly described not as ‘senses’, but as

‘sense nodules’ (‘lumps of meaning with greater stabil-

ity under contextual changes’) from Cruse (2000). How-

ever, it is now confirmed that this fundamental issue

is still present in deep contextualized language mod-

els, o�en thought to be superior to their static type-

based predecessors. Addressing it is a challenge facing

the semantic change detection community in general.

Before this issue is solved, the output of current seman-

tic change detection models still needs human scrutiny,

unless the downstream task at hand is tolerant to high

amounts of false positives.

5.4 Possible remedies
This paper is aimed rather at results interpretation and

analysis than at improving task scores. With this in

mind, we here do not o�er fully implemented and eval-

uated solutions addressing the issues described above.

Still, in this subsection, some possible thought direc-

tions are outlined (they are by no means exhaustive).

The 1st class (words with ‘fluid’ meaning) is clearly

erroneous. These words always exhibit strong change

without it being of any significant linguistic interest,

and ways must be devised to filter out these cases.

Possible approaches to do this could include measur-

ing change scores between random subsets of the same

time bin: if they are as high as those between di�erent

time bins, the possible reason is the word’s fluidity, not

real semantic change.

The 2nd class (‘data bursts’) can be considered erro-

neous or not, depending on one’s definition of seman-

tic change (e.g., whether it includes contextual vari-

ance). It can be looked at as a corpus problem: COHA

is not entirely well-balanced with respect to sense dis-

tribution. On the other hand, any dataset is biased

and incomplete, and the notion of a ‘100% balanced’

corpus is in fact ill-defined (balanced for what?). Ar-

guably, the creators of COHA did not set an aim to

somehow ‘properly represent’ the distribution of word

senses (even if there existed robust methods to imple-

ment this). As Hengchen et al. (2021) put it, ‘whatever is

encountered in corpora is only valid for those corpora

and not for language in general’. For the subclass of

proper names, pre-processing decisions can help: keep-

ing proper names capitalized will avoid them mixing

with common nouns and predicting a shi� for an oth-

erwise stable noun which just happens to have a pop-

ular proper name counterpart. On the other hand, this

raises di�icult questions about the boundaries between

word types and about the correctness of separating

‘Apple’ from ‘apple’ based on their wri�en forms only.

Again, what constitutes an error here has to be decided

separately for each particular study.

To detect the cases belonging to the 3rd class (syn-

tactic shi�s), one can arguably use the distributions of

PoS tags surrounding a given word. However, this ap-

proach is not scalable except for the cases when we are

interested in a small closed set of target words only. An-

other option is learning a weighted function of di�erent

layers of the language model (both lower layers carry-

ing more syntactic information and higher layers car-

rying more semantic information) to properly discern

between changes on di�erent language tiers.

In any case, this will require a human annotated

dataset of changes of di�erent types. With this at hand,

it will be possible to train a meta classifier taking as an

input the PRT and APD change coe�icients (including

signals from di�erent network layers), frequency val-

ues, capitalization and other features mentioned above

and producing a binary decision on whether the current

data point is potentially a false positive.

6 Limitations
Our analysis in Section 5 was based on the top 10
most changed words according to each change detec-

tion method. We acknowledge that more insights can

be obtained by analyzing more top ranking words (this

is also true for static embeddings).

Another important limitation of this work is our

focus on false positives: that is, words which are as-

signed a high semantic change score when this ar-

guably should not be the case. The study of false neg-

atives (words known to have changed but assigned low

scores by the models) is a topic of its own. It is related

to possible analysis of the PRT, APD and PRT/APD pre-

dictions on the ‘stable’ versus ‘changed’ words from the

SemEval-2020 test set (Schlechtweg et al., 2020). We

hope to deal with these aspects in the future.

The plots in Sections 4 and 5 show token represen-

tations of our target word. A potentially more power-

ful visualization approach could include showing also

some ‘anchor’ or ‘seed’ words serving to be�er disam-

biguate senses of di�erent tokens (or time-dependent

representations for static word embeddings). Note,

however, that choosing such anchor words is a separate

task in itself, see, for example, Hamilton et al. (2016b).

In addition, the plots could arguably be made more vi-

sually enticing and insightful by using di�erent mark-

ers and sub-sampling of data points (to make the plots

look cleaner). This was out of scope for this work.
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7 Conclusion
We have qualitatively analyzed the outputs of contex-

tualized embedding-based methods for detecting di-

achronic semantic change. First, we improved the re-

sults of prior work by proposing an ensemble of two

methods from Kutuzov and Giulianelli (2020), which

proved to be a robust solution across the board, outper-

forming prior contextualized methods on the SemEval-

2020 Task 1 test sets (Schlechtweg et al., 2020) and on

the GEMS test set (Gulordava and Baroni, 2011). Our

‘PRT/APD’ method is more suitable for a realistic case

of not knowing the gold score distribution beforehand.

Using PRT/APD together with ELMo, we produced

semantic change coe�icients for 690 English words

across five decades of the 20 and 21 century using the

COHA corpus (Davies, 2012), and systematically exam-

ined these predictions. Although many cases of strong

detected change do correspond to well-known semantic

shi�s, we also found multiple less clear-cut cases. These

are the words for which a high change score is produced

by the model, but it is not related to any ‘proper’ di-

achronic semantic shi� (not causing a new entry in a

dictionary). We discuss such cases in detail with exam-

ples, and propose their linguistic categorization. Note

that these issues do not depend on a particular training

algorithm (or an ensemble of algorithms). There is no

reason for them to not appear also when using BERT

or any other token-based embedding architecture; see

Giulianelli et al. (2020) and Yenicelik et al. (2020) who

show that BERT generates representations which form

structures tightly coupled with syntax and even senti-

ment. To properly test it empirically could be an in-

teresting future work, but we have already shown that

semantic change detection approaches based on static

word embeddings (as opposed to contextualized token-

based architectures) yield di�erent sorts of problematic

predictions.

It is not immediately clear whether improving the

quality and representativeness of diachronic corpora

can help alleviating this issue (producing more histor-

ical data is o�en not feasible if not impossible). Still,

it would be interesting to refine our results using larger

or cleaner historical corpora: for example, Clean COHA

(Alatrash et al., 2020). We also plan to analyze the se-

mantic change modeling results for other languages be-

sides English, as well as using di�erent neural network

layers to infer semantic change predictions.

The data (change scores for all target words) and

code (including visualization tools) used in this work is

available at https://github.com/ltgoslo/lscd_

lessons.
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