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Abstract Most linguistic studies of Judeo-Arabic, the ensemble of dialects spoken and written by Jews in Arab lands, are qualitative
in nature and rely on laborious manual annotation work, and are therefore limited in scale. In this work, we develop automatic
methods for morpho-syntactic tagging of Algerian Judeo-Arabic texts published by Algerian Jews in the 19th–20th centuries, based
on a linguistically tagged corpus. First, we describe our semi-automatic approach for preprocessing these texts. Then, we experiment
with both an off-the-shelf morphological tagger, several specially designed neural network taggers, and a hybrid human-in-the-loop
approach. Finally, we perform a real-world evaluation of new texts that were never tagged before in comparison with human expert
annotators. Our experimental results demonstrate that these methods can dramatically speed up and improve the linguistic research
pipeline, enabling linguists to study these dialects on a much greater scale.

1 Introduction

Application of Natural Language Processing (NLP) to
real-world problems has been the field’s goal from
its early days. As algorithms advance, the contribu-
tion of NLP to real problems has become more evi-
dent and more substantial. The present study origi-
nates from a real-world challenge faced by linguists of
Semitic languages, in this case researchers of the Judeo-
Arabic dialects of Algeria (AJA). Their challenge, sim-
ply put, is how to scale up linguistic analyses of such
dialects. Semitic languages in general, and Arabic in
particular, are characterized by a very rich morphol-
ogy that uses both templatic and concatenative mor-
phemes, combined with the use of a vowelless script
(“abjad”). This makes morphological analysis of Arabic
very time-consuming even for expert linguists. Because
speakers of the AJA dialects are becoming scarce, the
attention of linguists in this field has shifted from field-
work interviews with native speakers to library-based
analysis of texts written in those dialects. Fortunately,
vast collections of AJA texts were preserved in printed
books, journals and handwritten manuscripts. Analyz-
ing this linguistic treasure-trove, however, is proving
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to be challenging due to its size. The time-consuming
manual annotation does not scale, and requires exper-
tise that is hard to find.

We aim to scale up the linguistic analysis of this
Arabic dialect using NLP tools. In particular, our goal
is to develop an NLP tool that will assist AJA linguists
in their real-world task, in a way that they will find it
useful. Basing our work on the existing linguistically
Tagged Algerian Judeo-Arabic (TAJA) corpus (Tirosh-
Becker and Becker, 2022), we set out to develop auto-
matic methods for morpho-syntactic tagging of such
texts. Several specially designed neural network tag-
gers and an off-the-shelf morphological tagger were ex-
perimented with, and assessed for their accuracy and
likely usefulness. We also considered a hybrid human-
in-the-loop approach. Finally, we carried out a real-
world evaluation of our best performing part-of-speech
(POS) taggers, applying them to untagged texts and as-
sessing their quality via a user study with expert AJA
linguists. Our experimental results demonstrate that
these methods can dramatically speed up and improve
the linguistic research pipeline, enabling linguists to
study this language on a much greater scale.
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2 Linguistic Background

Judeo-Arabic (JA) lies in the intersection of Semitic
languages and Jewish languages. As a Semitic lan-
guage, and more specifically, an Arabic language vari-
ety, its words are generally composed of 3-letter roots,
with added vowels and consonants according to pat-
tern paradigms, as well as affixes and clitics (McCarthy,
1981). Arabic is the most widely spoken Semitic lan-
guage, with 300 million native speakers (Owens, 2013).
In fact, the term ‘Arabic’ refers both to Modern Stan-
dard Arabic (MSA) and to the Arabic dialects spoken
throughout the ArabWorld. The two varieties of Arabic
coexist in a state of diglossia (Ferguson, 1959) or con-
tinuuglossia (Hary, 2003), meaning the language vari-
eties exist side by side, with writers or speakers shift-
ing between varieties according to circumstance. MSA
is written using the Arabic script, which is a right-to-left
alphabet. Arabic dialects are usually written in Arabic
script as well, but there is no standardized spelling for
dialectal Arabic (Habash et al., 2012).

Arabic uses both templatic and concatenative mor-
phemes. There are two types of templatic morphemes:
roots and templates. Roots are usually three consonan-
tal radicals that signify some abstract meaning. Roots
are inserted into abstract patterns called templates.

There are two kinds of concatenative morphemes
that attach to the templatic morphemes. Clitics are
morphemes that have the syntactic characteristics of
words, but are phonologically bound to another word
(Zitouni, 2014), for example “wa”,1 meaning “and”. Af-
fixes are phonologically and syntactically part of the
word, and often represent inflectional features, such as
person, gender, number, and more.

Dialectal Arabic (DA) is a primarily spoken family of
language varieties (and in modern days, widely used in
written form on social media as well) that exist along-
side the writtenMSA. DA diverges fromMSA on several
levels. There are differences in phonology, morphology,
lexicon, and orthography (Habash et al., 2012). The re-
gional dialects can be broken down into main groups,
with one possible breakdown being Egyptian, Levan-
tine, Gulf, Iraqi, and Maghrebi. Even within dialect
groups there can be quite a lot of variance between di-
alects, although in many cases there is a certain level
of intelligibility between speakers of different dialects,
with more significant difficulty across dialect groups.
Maghrebi dialects are influenced by the contact with
French and Berber languages, and the Western-most
varieties could be unintelligible by speakers from other
regions in the Middle East, especially in spoken form
(Zaidan and Callison-Burch, 2014).

1We use the Habash-Soudi-Buckwalter transliteration scheme
(Habash et al., 2007) for Arabic text. For AJA texts, we use the com-
mon transliteration of JA; see Table 9 in the appendix.

While JA can be looked at as an ensemble of Ara-
bic dialects, it is first and foremost a subgroup of Jew-
ish languages. Jewish languages are a family of lan-
guage varieties that developed in Jewish communities
throughout the diaspora. The original language used
by Jews in the Land of Israel was Hebrew, followed
closely by Aramaic. As Jews spread across the world,
they adopted local languages and developed distinctive
varieties of these languages. Nonetheless Hebrew re-
mained their liturgical language, even as it almost died
out as a spoken language until its revival in the late 19th
and early 20th centuries. Perhaps the most well-known
of these Jewish languages is Yiddish, the Judeo-German
language developed by Ashkenazi Jews living in Central
and Eastern Europe before the Holocaust. Jewish lan-
guages vary in their distance and divergence from their
non-Jewish sister languages, some being influenced by
multiple languages due to language contact. Nonethe-
less, among the features that tie these languages to-
gether are the presence of Hebrew and Aramaic lexical
components (Kahn and Rubin, 2017), the use of the He-
brew alphabet for writing, and more.

Algerian JA (AJA) is a member of the North African
Judeo-Arabic dialect group, i.e., dialects spoken and
written by Jews of the Maghreb. AJA is in contact with
Moroccan and Tunisian Arabic dialects (both Jewish
and Muslim), with French and to a lesser extent other
trade languages such as Spanish and Italian, and with
Hebrew and Aramaic, the historical Jewish cultural lan-
guages. In general AJA shares many characteristics
with other Jewish languages, including the use of He-
brew script, presence of Hebrew and Aramaic compo-
nents, and a mixture of conservative trends, vernacular
features, and heterogeneous elements (Tirosh-Becker,
2012). To date, AJA has been sparsely studied by lin-
guists. The AJA dialect of the city of Algiers was studied
over a century ago by Cohen (1912), withmost of the re-
cent work on AJA published by Tirosh-Becker, focusing
on Constantine, the third largest city in Algeria (Tirosh-
Becker, 1988, 1989, 2011a,b, 2014). AJA research em-
ploys fieldwork interviews of informants and the study
of selected written texts (e.g., Bar-Asher, 1992; Tedghi,
2012; Tirosh-Becker, 2011a,c, 2012). Regretfully, the
number of AJA speakers has decreased following Alge-
ria’s independence (in 1962) and the subsequent disper-
sion of its Jewish communities, making fieldwork today
almost impossible. Hence, this research is now shifting
towards an analysis of the vast textual sources left by
many of these Jewish communities, in both manuscript
and print form. Most of the linguistic analyses done
thus far on AJA texts have been based on single or few
texts, as each study requires extended effort of poring
over texts, dictionaries, and grammars. Given the size
of these corpora, this is a perfect match for machine
learning and NLP approaches.
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3 Related Work
3.1 Arabic Corpora
Corpora for Arabic NLP are usually gathered with a
specific language variety in mind, and optionally an-
notated with information for specific tasks. We briefly
discuss here the most prominent and relevant Arabic
corpora, and refer to Belinkov (2021) for a broader sur-
vey. Masader (Alyafeai et al., 2022; Altaher et al., 2022)
is an online catalogue of Arabic NLP datasets.

The majority of annotated Arabic corpora are for
MSA. The most prominent annotated MSA corpora
are the Penn Arabic Treebank (PATB; Maamouri et al.,
2004), and the Prague Arabic Dependency Treebank
(PADT; Hajič et al., 2009), a dependency treebank for
MSA. In addition, El-Haj and Koulali (2013) present
KALIMAT, a multipurpose corpus for MSA, with over
20,000 articles and over 18 million words, annotated us-
ing existing state-of-the-art Arabic NLP tools for POS
tags, morphological analyses, named entity recognition
(NER), and auto-summarization.

There are also annotated corpora for DA. ATB-ARZ
(Maamouri et al., 2014) is an Egyptian Arabic treebank,
with 182,965 tokens after clitic splitting. This corpus
is annotated for POS, morphology, gloss, and syntactic
treebank, following the guidelines of the PATB. There
are several corpora for dialect identification that in-
clude Algerian and other Maghrebi dialects, such as
Habibi (El-Haj, 2020), a corpus of Arabic song lyrics, or
QADI (Abdelali et al., 2021). Seddah et al. (2020) created
the NArabizi corpus, North African Arabic written in
Latin letters (commonly known as Arabizi), with 1500
sentences of annotated Algerian dialectal Arabic, with
tokenization, morphological analysis, code-switching
identification, syntactic annotations, and sentence-
level translations in French. MADAR (Bouamor et al.,
2018) has 12,000 sentences with parallel translations in
mutliple dialects, including Algerian and other North
African dialects, but without morphological annota-
tions. In addition, Zribi et al. (2015) transcribed and
annotated a spoken Tunisian Arabic corpus, a North
African dialect that is close to Algerian Arabic. It is
worth noting that many DA corpora are transcribed
from audio sources and are not originally textual data.

As for Judeo-Arabic corpora, the only publicly avail-
able JA corpus to date is the Friedberg Judeo-Arabic
Project,2 with almost 4 million words from 110 pre-
modern JA texts, including texts by Rav Saadia Gaon
and Maimonides. The only annotation available for
these words is language (Arabic, or Hebrew/Aramaic).
Recently, Tirosh-Becker and Becker (2022) developed
the TAJA (Tagged Algerian Judeo-Arabic) corpus, a lin-
guistically annotated corpus of written Algerian Judeo-
Arabic. This corpus is a collection of modern AJA texts

2https://fjms.genizah.org/

published in Algeria in the late 19th and the first half of
the 20th century. Section 4 provides a detailed descrip-
tion of the TAJA corpus, on which this paper is based.

3.2 Arabic POSTagging andMorpholog-
ical Analysis

Much of the work done on POS tagging in Arabic has
used statistical methods. Diab (2009) uses an SVM
classifier for choosing POS tags on MSA. MADAMIRA
(Pasha et al., 2014), trained on the MSA PATB, is of-
ten used as a benchmark for Arabic POS tagging. It
uses a morphological analysis component as part of
the preprocessing stage, and then uses SVM and lan-
guage models to predict POS tags, as well as tokeniza-
tion, NER, and other tasks. Farasa is another Arabic
NLP tool with support for POS tagging in MSA and DA,
which is based on conditional random fields (Abdelali
et al., 2016; Darwish et al., 2018). In recent work, deep
neural networks have been used to train POS and mor-
phological taggers. Plank et al. (2016) built POS tag-
gers for 22 languages, including Arabic, using data from
the Universal Dependencies project (Nivre et al., 2015).
They experiment with using word embeddings, charac-
ter embeddings, byte embeddings, and some combina-
tions thereof. Their best performing model does espe-
cially well on Arabic, reaching up to 98.91% accuracy.

Works that cover DA often leverage tools developed
on or for MSA. Duh and Kirchhoff (2005) propose a
minimally supervised approach for POS tagging of DA
that combines raw text data from several varieties of
Arabic, and a morphological analyzer for MSA with no
other dialect-specific tools. Habash et al. (2013) tweak
the MSA morphological analyzer MADA (Roth et al.,
2008) for analyzing Egyptian DA, rather than the orig-
inal MSA. They achieve up to 84.5% accuracy on mor-
phological tags and 90.1% on Penn POS tags.

Other studies that address both MSA and DA have
used bi-LSTMs for morphological tagging, sometimes
jointly with other tasks like diacritization (Zalmout and
Habash, 2020, 2019). Very recently, Inoue et al. (2022)
have shown benefits from using pre-trained Trans-
former language models, especially when transferring
from high- to low-resource dialects or language vari-
eties, outperforming previous approaches.

Darwish et al. (2020) introduce a robust multi-
dialect POS tagging system trained on tweets from
four different dialect groups. They implement two ap-
proaches: the first uses CRFs, and the second stacks
layers of CNNs, recurrent neural networks (RNNs), and
a CRF layer. Their dataset comprises hundreds of
tweets in each dialect group, each manually segmented
into tokens and clitics. They make use of stem tem-
plates and Brown clusters as features concatenated to
the embeddings for classification, and achieve accuracy
of up to 92.4% on the POS tagging of seen words and
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source text reference line number context word
לסקיפ'א תשבאה האדי אדנייא אדנייא

Gn_avot_4:16 2
ʾdnyyʾ hʾdy tšbʾh lsqyfʾ ʾdnyyʾ

lemma/root POS morphological analysis 1 morphological analysis 2
דנייא
dnyyʾ

noun feminine signular

additional tags enclitic pronoun comments orthography and pronunciation
1. yy denotes consonantal ya’

NA NA
2. Phonetic transcription of the definite article

Table 1: The general structure of a word-record in the TAJA corpus with a specific example. The words and context are
stored in the word-record in their original Hebrew script; transliterations are added here for clarity.

82.9% on unseen words in Maghrebi dialects.
Given the orthographic, grammatical, and lexical

differences between JA on the one side and MSA and
other Arabic dialects on the other side, it is not straight-
forward to apply tools developed for MSA and Arabic-
script DA to processing JA. Future workmay investigate
ways to transfer such tools or incorporate them with
JA-dedicated tools. Efforts to transliterate JA texts to
Arabic script (Terner et al., 2020) may assists in pursu-
ing this direction.

3.3 Code-Switching
While there is no work known to us applying NLP to JA,
there is work on code-switching, which is a significant
characteristic of JA, as we noted in Section 2. Code-
switching is when a speaker alternates between two or
more languages or dialects in the context of a single
conversation or situation. Ahmed (2018) annotates He-
brew elements in JA, capturing cases of code-switching,
borrowing, and Hebrew quotations, and investigating
sociolinguistic aspects in medieval JA texts. Wagner
and Connolly (2018) perform a quantitative analysis of
code-switching in JA texts from the Cairo Geniza.

As Çetinoğlu et al. (2016) point out, POS tagging of
code-switched data is much harder than taggingmono-
lingual texts, as models could reach 97% accuracy for
the latter, but as low as 77% for the former. Attia et al.
(2019) find that POS tags provide a strong signal for
identifying code-switching. Just as code-switching is a
major characteristic of AJA, it also characterizes other
varieties of Algerian Arabic, and poses a challenge to
Arabic NLP research (Riabi et al., 2021).

4 Data
This project has used the Tagged Algerian Judeo-Arabic
(TAJA) corpus developed by Tirosh-Becker and Becker
(2022).3 This AJA corpus is a collection of modern AJA
texts published in Algeria in the late 19th and the first
half of the 20th century. The texts represent a variety
of prose genres written by Algerian Jews, including:

3The corpus is available through the authors.

• Bible translations, known as šarḥ (sg.) or šurūḥ
(pl.).

• Translations of Hebrew post-biblical texts (such
as the Mishnah, the Passover Haggadah, and
liturgical poems).

• Translations of other Hebrew texts (such as Mai-
monides’ Mishne Torah).

• Original writings composed in AJA, including
commentaries and writings about Jewish law.

• Journalistic writings in AJA.

These texts were manually typed into computer-
readable format and subsequently proofread, as He-
brew OCR (Optical Character Recognition) failed on
these AJA texts. This was due not only to the less-than-
favorable conditions under which the books had been
stored, leaving the pages grayed and worn, but also be-
cause the fonts used in these books are not identical to
standard Hebrew, as they have JA-specific adaptations,
such as diacritics. Each text was manually tokenized
and annotated by research assistants (RAs, usually MA
or PhD candidates) in a spreadsheet, according to strict
guidelines, and most were verified by a senior expert.

The digitization and annotation project spanned
several years, with some dozen RAs contributing to
the annotation efforts. Approximately 80% of the time
spent on the creation of TAJA was dedicated to the an-
notation process, as the digitization is a more straight-
forward (though non-trivial) task.

4.1 Data Annotation

The TAJA corpus was created to be a linguistically
annotated digital corpus of genre-diverse written texts
(Tirosh-Becker and Becker, 2022). The basic elements in
this digital corpus are the individual words. Generally
speaking, the texts are split on white-spaces, though
there are some multi-word expressions that are anno-
tated as a single unit. Each word is stored in a sort of
word-record, which places the word in its sentence-level
context (as well as a reference to the full text), and pro-
vides linguistic information about its grammatical com-
ponents and more (Table 1).
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4.1.1 Parts of Speech (POS)

Each word is tagged with a unique POS tag. The tags
are drawn from a closed list of the following POS: noun,
verb, particle, proper noun, relative pronoun, adjective,
number, personal pronoun, demonstrative, adverb, pre-
sentative, quantifier, and acronym. POS tagging was
also applied to the embedded Hebrew, Aramaic, and
French words, which are identified in the TAJA corpus
by code-switching tags, as these embedded words are
interwoven into the syntactic fabric of JA. In almost all
cases these code-switching words were nouns. See Ta-
ble 10 (Appendix) for a list of valid POS tags.

4.1.2 Morphological Tags

Themorphology of each word was fully analyzed by ex-
pert JA linguists. Each POS tag calls for its own set of
morphological features. Given a noun, for example, we
expect information about gender, number, and code-
switching. The fields in our dataset in which we find
this morphological information are analysis1, analysis2,
additional tags and enclitic pronouns. Note that there
is a clear ranking between these fields. Most of the
morphological information is captured by the first two
fields, analysis1 and analysis2, reflecting the rich mor-
phology of AJA, while the additional tags field refers to
a small subset of morphological attributes that apply
only to a limited number of POS tags, i.e., to verbs (com-
binations of person, gender, and number) or to demon-
stratives (proximal vs. distal). The information pro-
vided by the enclitic pronouns field is morphologically
more restricted. Each POS tag generally has its own
set of legal values for these analyses, and they do not
often overlap with the legal morphological annotations
of other POS tags. In fact, at times, the same linguistic
information may appear in different annotation fields
for different POS tags. For example, code-switching in-
formation for nouns appears in the analysis1 field, but
the same information for proper nouns appears in anal-
ysis2. See Tables 11–14 (Appendix) for lists of valid mor-
phological tags for the prominent POS tags.

4.2 Corpus Statistics
TAJA is comprised of 69 spreadsheet files, which cover
16 printed texts. These include 9904 AJA sentences,
with a total of 61,481 tokens. There are 17,876 dif-
ferent word types in the corpus, for a type–token ra-
tio (TTR) of 0.2907. It is important to recall that AJA
is a highly morphological language, with extensive use
of affixes and clitics. For example, a word is marked as
definite using the prefix ʾl- . The same is true for several
prepositions, such as b- (“in” or “at”) or l- (“to” or “for”).
Thus, a single lemma with two different prefixes will
be counted as two distinct word types, so the reported
number of word types in fact represents fewer lemmas.

Tokens Types

Surface 20.89% 37.37%
Lemmas 5.34% 16.88%

Table 2: Out-of-vocabulary percentages for tokens and
types, by surface level words and for lemmas.

Figure 1: Part-of-speech tag distribution for the TAJA
corpus.

As for the use of the term “lemma”, the verbs in TAJA
are tagged for the root rather than their lemma. In ad-
dition, approximately 2.1% of words in TAJA are miss-
ing the annotation in the lemma field, and are therefore
left out of statistical calculations we report below at the
level of lemmas. These issues limit our ability to provide
accurate statistics on a lemma level.

For the 90/10 training/test split of TAJA with which
we work in our experiments, we see high out of vocab-
ulary (OOV) percentages for surface-level words (Ta-
ble 2). When looking at word types, we see that more
than a third of surface-level word types in the test set
did not appear in the training set. Recall that this in-
cludes words that appear in the training set with an
affix (such as a determiner, for example), and appear in
the test set without said affix (or vice versa). We also
look at the lemma OOV percentage, despite what we
explained above about verbs being annotated for root
instead of lemma. There is a large portion of OOV
lemma types in the test set. These characteristics illus-
trate the diversity of the data in both lexical and surface
form levels.

Finally, the data suffer from a long-tailed distribu-
tion of the annotations, a common problem in NLP.
When examining the distribution of POS tags, for ex-
ample, the three most common POS tags (noun, verb,
and particle) account for approximately 80% of the an-
notations (see Figure 1), while the other 11 valid POS
tags comprise only a fifth of the annotations.
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4.3 Corpus Ambiguity
Before we discuss the ambiguity statistics of the TAJA
corpus, we must address the noisiness of the data.
Despite the laborious annotation effort (Tirosh-Becker
and Becker, 2022), the data still contain problematic an-
notations. We discuss our attempts to clean the data
below, but at this point, it is enough to know that some
annotations appear with typos, or with additions that
should not be there, such as question marks.

Corpus ambiguity is defined in Dermatas and
Kokkinakis (1995) as the mean number of possible tags
for each word of the corpus. This number can provide
a signal for the difficulty of the tagging task. The cor-
pus ambiguity of TAJA, calculated on the surface-level
tokens, is 1.7497. This is high relative to the corpus am-
biguity of other language corpora, as reported in Der-
matas and Kokkinakis (1995), which range from 1.11
(for Dutch) to 1.69 (for French). However, as we men-
tioned, the noise in the annotations makes this number
unreliable. For example, if a word that appears many
times in the corpus appears one time with a typo in the
annotation, this will raise the corpus ambiguity unjus-
tifiably.

4.4 End-Goal: The Unannotated NAJA
Corpus

In addition to TAJA, there exists a larger unannotated
corpus of digitized AJA text. The New Algerian Judeo-
Arabic (NAJA) corpus includes the same genres as TAJA,
though differently distributed. The estimated size of
NAJA is between 170k-186k tokens, almost three times
as many as TAJA. It is the laborious task of manually
annotating this corpus that we wish to automate away,
using taggers trained on TAJA.

5 Preprocessing
In this section, we describe several challenges we faced
in the preprocessing stage and the steps we took to ad-
dress them.

5.1 Invalid annotations
Although the annotators were provided with the list
of legal tags and legal morphological annotations, the
data are rife with ‘illegal’ values, including mistyped
tags (e.g., צל instead of 4,(מל two tags combined into
one מל+שע) rather than ,(שע annotations with question
marks and slashes (indicating that they are not confi-
dent about the tag they chose) and most often, words
that are simply missing a tag.

4This mistyping is caused by the letter צ (ṣ) being adjacent to the
letter מ (m) on the Hebrew keyboard. Table 10 (Appendix) provides
the list of POS codes and their meanings.

We took a semi-automated approach for correcting
as many annotations as possible. We created a map-
ping from misspelled or mistyped tags to the correct
spelling. This was an iterative process, as at each iter-
ation new categories of errors emerged, requiring ad-
ditional consultation with JA language experts. For ex-
ample, when resolving combined tags (as we described
above), it is not obvious that it is desirable to drop the
information represented by either of the tags. Being
able to automate away the correct or obvious cases, en-
abled us to narrow down the number of questions we
needed to bring to the experts, and conversely, having
a language expert to whom we could bring the difficult
questions, allowed us to ensure the annotations are as
accurate as possible. Upon loading the spreadsheets
and ingesting the data, we automatically convert any
incorrect tags that appear in our mappings to the cor-
rect tags. These mappings catch 662 errors that are au-
tomatically corrected as part of the preprocessing stage.
Using regular expressions we collected the cases of low
confidence annotations (indicated by question marks
or slashes in the original spreadsheets), and sent them
for review by the language experts. Most of these were
corrected manually in the original spreadsheets, in ad-
dition to some errors found in the enclitic pronouns, for
a total of 64 manual corrections. Finally, missing anno-
tations are represented with an underscore.

5.2 Column offsets

Another kind of noise we encountered in the annotated
data are column offsets (e.g., the POS tag appears in
the analysis1 column, and so on). During preprocessing,
we check automatically for such offsets in the columns,
and automatically realign the annotations to their cor-
rect fields while parsing. We found 64 such cases, and
fixed them automatically.

5.3 Multi-word expressions

The spreadsheet input includes the tokenization of each
sentence, listing each token on a separate line, where
each sentence is separated from the next by an empty
line. In most cases, the tokenization is done on white-
spaces. However, on various occasions, a multi-word
expression appears on a single line and is annotated as
a single unit. This happensmost commonlywith proper
nouns, such as השנה ראש (rʾš hšnh, ‘the New Year’; this
is also a Hebrew construct phrase) or נון ולד יהושע (yh-
wšʿ wld nwn, ‘Joshua son of Nun’), or Hebrew phrases
such as the phrase הזה בעולם (bʿwlm hzh, ‘in this world’;
includes a noun) or טוב ועשה (wʿsh ṭwv, ‘and do good’; in-
cludes a verb). These multi-word expressions are most
often Hebrew phrases or terms that are embedded in
the AJA text. They are treated as a single word in TAJA,
because they represent a single concept or entity. How-
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ever, this potentially poses a problem, as the tokeniza-
tion we perform on new texts is based on white-spaces
and punctuation, and therefore when coming to anno-
tate previously unseen texts with multi-word expres-
sions, the tagger will address each component of the
phrase as its own word, and it might be considered ‘out
of vocabulary’ as far as our tagger is concerned. How-
ever, this is a very rare phenomenon, with fewer than
100 appearances in the entire corpus, and therefore we
did not split multi-word phrases in our experiments.

6 Methods

6.1 The Tasks
We formulate both part-of-speech (POS) and morpho-
logical tagging as sequence labeling tasks. In the POS
tagging task, we are given an input sentence of𝑛 words,
denoted by x = 𝑤1, . . . ,𝑤𝑛 , and need to find the correct
sequence of tags t = 𝑡1, . . . , 𝑡𝑛 , where 𝑡𝑖 is taken from
the set of POS tags 𝑇 (Table 10, Appendix). Morpho-
logical tagging is performed on the same input as the
POS tagging task. In this task, there are four morpho-
logical fields (analysis1, analysis2, additional tags, en-
clitic pronoun) to be tagged in addition to the POS tag
field: t1 = 𝑡11 , . . . , 𝑡

1
𝑛 , t

2 = 𝑡21 , . . . , 𝑡
2
𝑛 , t

3 = 𝑡31 , . . . , 𝑡
3
𝑛 ,

t4 = 𝑡41 , . . . , 𝑡
4
𝑛 . Tables 11–14 (Appendix) contain lists of

valid morphological tags for the prominent POS tags.

6.2 Models
We experiment with two types of models for the se-
quence labeling tasks: CRFs and RNNs. CRFs (Laf-
ferty et al., 2001) are a framework for building prob-
abilistic models for segmenting and labeling sequence
data, while relaxing strong independence assumptions
made by hidden Markov models (HMMs), and avoid-
ing certain biases that maximum entropyMarkov mod-
els (MEMMs) are prone to have. Parameter estima-
tion is done by maximum likelihood estimation and the
Viterbi algorithm is used for inference. CRFs use hand-
crafted features, such as the preceding and succeeding
words, prefixes and suffixes, and more. In this study
we experiment with MarMoT, an off-the-shelf tool that
implements a pruned CRF model which has performed
well on Modern Standard Arabic (Müller et al., 2013).

In addition to the standard MarMoT tool, we imple-
ment our own tagging model based on long short-term
memory networks (LSTM; Hochreiter and Schmidhu-
ber, 1997), a type of RNN that is more robust to
the vanishing gradients problem and performs well on
sequence-level tasks. Our backbone is a bi-directional
LSTM model based on the PyTorch implementation
(Paszke et al., 2019). On top of that, we add a linear
layer that maps the hidden representations to the out-
put space: either the space of all POS tags or the space

of each of the morphological tag classes. Below we de-
scribe several improvements to this basic architecture.

6.3 Word-based vs. Character-based

Our basic LSTM architecture receives a sentence as in-
put, and, using an embedding matrix for the words,
passes the word embedding vectors 𝑥1 . . . 𝑥𝑛 through
the LSTM one after another. However, this method has
no way to deal with out-of-vocabulary (OOV) words,
which are all mapped to a single ‘UNKNOWN’ token,
and therefore to the same word embedding. It must use
contextual information alone from neighboring words.
OOV words are especially common in morphologically
rich languages like AJA, as is evident from the corpus
statistics (Section 4.2). To account for the highly mor-
phological nature of AJA, it is important to address the
characters on an individual level, as has been shown for
other languages (Dos Santos and Zadrozny, 2014; Ling
et al., 2015; Ballesteros et al., 2015). Looking at char-
acters separately from words helps tag OOV words,
because we can identify certain affixes that provide a
strong signal about one of the annotations. For exam-
ple, words starting with אל (ʾl), א (ʾ), or ל (l)5 are more
likely to be nouns.

For this purpose, we created two character-aware
models. Both models train embeddings for the charac-
ters, but use different methods to create a word repre-
sentation given the character embeddings.6 Let the 𝑘𝑡ℎ

word of sentence x be 𝑤𝑘 = 𝑐𝑘,1, 𝑐𝑘,2, . . . , 𝑐𝑘,𝑚 (for ease
of notation, 𝑐𝑘,𝑖 represents both characters and charac-
ter embeddings). The first method builds on the idea
proposed by (Luong and Manning, 2016), and passes
each word𝑤𝑘 ’s characters through an inner character-
LSTM. The final hidden state ℎ𝑘,𝑚 of the character-
LSTM is a character-aware word representation, which
is concatenated to that word’s embedding 𝑥𝑘 . The com-
bined representation 𝑥𝑘 = (𝑥𝑘 , ℎ𝑘,𝑚) is fed to the word-
level LSTM. We call this model chaR-lstm.

The second method follows (Kim et al., 2016), and
uses a one-dimensional convolutional neural network
(CNN), with a hyperparametric number of kernels 𝐾
that convolve with thematrix of eachword𝑤𝑘 ’s charac-
ter embeddings. We apply a tanh non-linearity to the
convolution outputs, and then pool the maximal values
of each output to create a single character-based repre-
sentation for each word, ℎ𝑘 . This representation is con-
catenated to the word’s embedding. The combined rep-
resentation 𝑥𝑘 = (𝑥𝑘 , ℎ𝑘 ) is fed to the word-level LSTM.
We call this model cnn.

5All these forms are related to the determiner אל (ʾl).
6One could use pre-trained word or character embeddings, but

given the relatively small size of our corpus, we do not expect this to
yield substantial improvements.
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6.4 Flat vs. Hierarchical vs. Multitask
Learning

Our basic experimental setup is to train tagging models
for each field alone, resulting in five separate models
(one for POS tagging and four for the morphological
fields). We consider this ‘flat’ tagging a sort of baseline,
as we hypothesize that including information from one
field can improve results when predicting another.

The next setting we explore is a hierarchical model,
utilizing a simple two-tier hierarchy with POS tags at
the base and morphological tags building on that. This
is anchored in the tag distribution. As mentioned in
Section 4.1.2, most POS tags have their own set of legal
morphological analyses in each field that are not shared
with other POS tags. Thus, given the POS tag for a
given word, the size of the possible pool of tags in each
morphological field significantly decreases. Let 𝑥𝑘 be
the word representation of word𝑤𝑘 including character
information, as discussed above. In this setup, we also
train five separate models, but while the POS model is
identical to the base model architecture, the four mor-
phological models concatenate POS tag information to
the word representations, in the form of a one-hot vec-
tor 𝑒𝑡𝑘 ∈ {0, 1}𝑑 (where 𝑡𝑘 is the index of the POS of𝑤𝑘 ,
for some ordering of all the POS tags, and 𝑑 is the size
of the POS tag set). The concatenated vector (𝑥𝑘 , 𝑒𝑡𝑘 )
is then fed to the word-level LSTM. During training, we
provide the ground truth POS tag. At inference, we use
POS tags predicted by the POS tagging model.7

Finally, a natural approach to take when tackling
several tasks that are related to one another is multi-
task learning (MTL; Caruana, 1997), which has previous
been considered for MSA morphological tagging (In-
oue et al., 2017). In this setup, we share all parameters
(word and character embeddings, and hidden states)
between the different tasks, except for the final linear
layer that receives the hidden states as input, and re-
turns the scores for the relevant tag space. We have
one layer of this kind for each task, each with its own
parameters. We average the losses of each task, and
backpropogate based on the averaged loss.

7 Experiments

7.1 POS Experiments

We begin our experimentation with addressing the POS
tagging task alone, in order to determine the best archi-
tecture for our base model on a simpler task before div-
ing into the more complicated morphology task. Our
initial experiments are run with a base configuration

7We use this setup for simplicity and do not consider curriculum
learning strategies that sample targets both from the ground truth
and from the model’s predictions (Zhang et al., 2019).

of hyperparameters loosely based on prior work (Kim
et al., 2016) and general intuition. Then we conduct a
hyperparameter search for the best configuration. The
exact settings are provided in Appendix B.

We run all our experiments by training on 90% of
the tagged data, of which we hold out 10% for early
stopping of the NN model training, and testing on the
remaining 10%. All results of the neural-network-based
models are averaged over five runs using five different
seeds, unless noted otherwise. We compare the vari-
ous model results to a ‘most-frequent baseline’ assign-
ment, in which we assign a word the POS with which it
appears most often in the training data, and assign all
OOV words the most common POS tag (noun).

Table 3 summarizes the results of the various POS
tagging models. The most frequent tag baseline is quite
strong, as common in POS tagging tasks. In fact, it out-
performs the woRd-lstm model. Using character infor-
mation is beneficial, and the chaR-cnn model is better
able to do so than the chaR-lstm model. Among the
neural network models, it performs best. The best per-
forming tagger overall is the CRF-based MarMoT tool.

Model Accuracy [%]

most frequent baseline 82.01
woRd-lstm 78.08±1.10
chaR-lstm 84.42±0.80
chaR-cnn 87.45±0.58
MarMoT 89.17

Table 3: Accuracy of the POS taggingmodels. Best scor-
ing model appears in bold.

7.2 Interim Summary

We saw in our experiments above that, among our
neural-network (NN) approaches, representing a word
by a CNN on its characters performs better than an
LSTM, or ignoring the characters altogether. We use
this chaR-cnn model for hyperparameter tuning (see
Appendix B). However, we also saw that MarMoT is in-
deed a very strong tool, and outperforms the chaR-cnn
in this task. Therefore, we move forward to the mor-
phological tagging using both models, the chaR-cnn
representing the NN family, and MarMoT as a strong
off-the-shelf tool.

7.3 Morphology Experiments

As we just discussed, of the three neural network archi-
tectures, the chaR-cnn model performs best, and there-
fore we choose this architecture as our base model as
we move forward with the morphology experiments,
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morphology

Model analysis1 analysis2 additional tags enclitic

most frequent baseline 72.89 76.71 87.16 94.47
chaR-cnn
flat 80.18±0.47 84.02±0.53 90.59±0.08 95.72±0.10
hierarchical (pred POS) 79.56±0.32 83.69±0.76 90.05±0.53 95.87±0.14
hierarchical (true POS) 88.35±0.39 92.34±0.19 94.81±0.11 96.30±0.21
MTL 78.15±0.78 83.57±0.52 89.75±0.26 94.96±0.28

MarMoT 82.32 85.55 91.69 96.38

Table 4: Morphological models results by field. Best scoring results are in bold.

using the same base configuration of hyperparame-
ters that we used in the POS experiments. We exper-
iment with three approaches for predicting morpho-
logical tags (Section 6.4): the flat approach trains one
model per each morphological attribute, the hierarchi-
cal approach uses POS information when predicting
morphology, and the multitask approach predicts all
morphological attributes jointly in a multitask manner.
The hierarchical model was tested in two different set-
ups, using either the predicted POS tag or the true POS
tag in order to predict the morphological tags.

Providing true POS tags is a realistic choice for a
linguistic annotation pipeline, since POS annotation
is much simpler than morphological annotation. One
may envision a human-in-the-loop process, where hu-
mans correct initial automatically assigned POS tags,
and then a morphological tagger relies on the human-
corrected tags. We return to this point in the discussion
(Section 9).

7.3.1 Field by Field Accuracy

Table 4 shows the morphological tagging results broken
down by field. The comparison highlights that our ‘hi-
erarchical chaR-cnn model’, when based on true POS,
outperformed MarMoT in the first three morphology
analysis fields. Themodel’s success ranged from almost
89% for the analysis1 field, almost 93% for analysis2 and
almost 95% for additional tags. This was judged as very
significant by our JA experts. Due to its morphological
complexity, manually tagging these morphology fields
is highly time consuming even for experienced linguists.
Enclitic pronouns, which are morphologically more re-
stricted, are successfully predicted bymostmodels with
an accuracy greater than 95%.

7.3.2 Overall Accuracy

We also present several alternative overall scores for
each of the taggers (Table 5). The ‘strict’ score consid-
ers a word to be correctly tagged only if all five fields
are correctly tagged. This score was judged by the JA

Model strict flexible weighted

most freq 66.94 82.64 80.76
chaR-cnn
flat 66.71±0.34 87.58±0.07 86.32±0.08
hierarchical 70.91±0.67 87.35±0.35 86.12±0.40
(pred POS)
hierarchical 71.18±0.52 91.95±0.13 90.71±0.15
(true POS)
MTL 66.24±0.97 86.84±0.30 85.72±0.30

MarMoT 75.84 89.02 87.92

Table 5: Overall accuracy scores for the morphologi-
cal models. The strict, flexible, and weighted (3,2,2,1,1)
scores are defined in the text.

linguists as too severe, as they see real-world useful-
ness even if not all of the analysis fields were correctly
tagged. The ‘flexible’ score counts each correct tag sep-
arately and gives equal weight to each field. Finally,
reflecting the importance that our JA experts assigned
to each field, a ‘weighted’ score was calculated as well,
where the vector (3, 2, 2, 1, 1), for example, empha-
sizes POS over analysis1 and analysis2, and gives the
lowest weight to the additional tags and the enclitic
pronouns. The comparison shows that our hierarchi-
cal chaR-cnn (true POS) model performs better than
MarMoT by 2.2% and 2.8% when calculating the ‘flexi-
ble’ score and the ‘weighted’ score, respectively, while
MarMoT excels by the ‘strict’ metric.

7.3.3 Accuracy forwordswith legal tag combina-
tions

Another way to evaluate our results is to look for all the
words for which we know the tagger went wrong some-
how. Recall that each POS has a certain set of legal val-
ues in each morphological analysis field, which differs
from POS to POS (some of which can be seen in Tables
11–14 (Appendix). As our taggers are given the entire
tagset, regardless of each specific word’s POS, theymay
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legal tag combo illegal tag combo illegal tag combo
Model accuracy [%] average no. words percent [%]

chaR-cnn
flat 92.40±0.15 1652.0±44.9 26.95±0.73
hierarchical (pred POS) 88.56±0.20 1082.2±81.5 17.65±1.32
hierarchical (true POS) 95.18±0.25 1070.4±57.6 17.46±0.94
MTL 89.92±0.27 1379.0±44.6 22.49±0.73

MarMoT 89.49 1003.0 16.36

Table 6: ‘Flexible’ model accuracy for words with legal tag combinations, after removing words flagged as illegal combi-
nations of POS tag and morphological analyses, and the average number of illegally tagged words and their percentage
of the test set.

morphology

Model POS analysis1 analysis2 additional tags enclitic

chaR-cnn
flat 72.63±0.52 59.64±0.99 61.06±1.28 73.80±0.61 88.40±0.43
hier. (pred) 72.58±0.46 57.72±0.81 59.64±1.39 72.26±1.85 89.01±0.68
hier. (true) 73.96±0.61 74.91±0.54 78.42±1.09 85.39±0.33 90.87±0.49
MTL 72.86±1.03 55.33±1.60 58.59±1.53 70.98±1.25 87.20±0.70

MarMoT 71.35 55.82 59.95 75.02 89.23

Table 7: Accuracy of morphology tagging for Out of Vocabulary (OOV) words.

produce illegal tag combinations if one of the predicted
morphological tags does not appear in the legal values
of the word’s predicted POS tag (or, in the case of the
true-POS-based hierarchical model, the true POS). In
Table 6, we show the ‘flexible’ accuracy for each model
on all the words that have legal tag combinations. Note
that the accuracy of the true-POS hierarchical model
for suchwords is almost 4% higher than its performance
on the entire test set.

The table also shows the number of words that were
tagged with illegal tag combinations and their percent-
age in the test set. Several observations can be made
on the basis of this analysis. First, the models with the
highest percentage of illegally tagged words are the flat
chaR-cnn and the multitask model. While the reported
percentage of illegally tagged words for the true-POS-
based hierarchical model (17%) is slightly higher than
that of MarMoT, it is within a standard deviation of
the percentage of words flagged in the MarMoT run.
Coupled with the significant improvement in the ‘flex-
ible’ score over MarMoT, which hardly improves over
its general accuracy, this is a strong indication of the
benefits of the true-POS-based hierarchical model.

We concede that 17% of all words is too many to
expect a JA expert to address when using an automatic
system for tagging new and unannotated data; how-
ever, these findings could potentially be used in other
ways as well, such as adding a step in the automatic
tagging process that forces the tagger to select a le-

gal combination of POS tag and morphological anal-
yses, using some heuristic to determine which of the
predicted annotations to follow. This being said, as
we mentioned in Section 4.3, the annotations in TAJA
are noisy, and as such, 12% of the words in the anno-
tated corpus appear with invalid analyses (mostly miss-
ing analyses, some illegal combinations) to begin with.

7.3.4 Out of Vocabulary Accuracy

Another way to evaluate how useful each model is in a
real-world setting is through the accuracy of morphol-
ogy tagging ofOut of Vocabulary (OOV)words (Table 7)
– words in the test set that did not occur in the train-
ing set. OOV words accounted for 21% of the TAJA test
set (1281 of 6131 words). This high percentage of OOV
words is reflective of the corpus’ characteristics as dis-
cussed in Section 4.2. The results of this analysis are
remarkable, with the hierarchical chaR-cnn (true POS)
significantly outperforming all other models across the
different morphological analysis fields by 19% for anal-
ysis1 and analysis2 and by 10% for additional tags. This
is a significant and encouraging finding, because it is
very likely that the percentage of OOV words will in-
crease in the future when we apply these tools to new
texts beyond the TAJA corpus, especially if these texts
are of different literary genres. Despite performing well
in some of the previous evaluations, MarMoT failed on
the morphology analysis of OOV words. A related ob-
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servation is that even the hierarchical chaR-cnn (pre-
dicted POS) model was able to assign POS tags to OOV
words slightly better than MarMoT, achieving an accu-
racy of 72.58% vs. MarMoT’s 71.35%.

8 Real-World Evaluation
The end goal of this project is to provide AJA language
experts with an automatic tagger to help them anno-
tate large volumes of text, a task which is otherwise la-
borious and time-consuming when tackled manually.
To evaluate such real-world usefulness of the taggers
we set out to compare the performance of our two best
POS models (the hierarchical chaR-cnn based model
and MarMoT) with that of manual annotation by two
expert AJA linguists.

8.1 The Task
For this evaluation task we selected a subset of the
above-mentioned NAJA corpus, encompassing 30 chap-
ters from the AJA translation of Psalms that were never
annotated (a total of 3817 words). The two models
were first trained on the entire TAJA corpus, and then
we used the models to tag these selected unannotated
texts. The resulting POS predictions were then given
to two AJA experts of different calibers (see below), to
evaluate and score. The two experts were instructed
to write corrections only if one or both of the models
were wrong, and to leave the annotation blank if both
were correct. This enabled us not only to evaluate the
performance of our competing models, but also assess
inter-annotator agreement (IAA).

8.2 Inter-Annotator Agreement
It should be noted that the two human annotators that
performed this task were of different expertise levels.
One annotator is a senior professor of Judeo-Arabic,
with decades of experience annotating and analyzing
Judeo-Arabic texts. The second annotator is a doctoral
student, a research assistant who has worked for sev-
eral years under that professor’s tutelage. Therefore,
we consider the annotations of the senior expert to be
the gold-standard, whereas the annotation of the junior
expert is considered to be a silver-standard.

We calculate Cohen’s Kappa between the annota-
tions of the senior expert and those provided by the ju-
nior expert, excluding all the words on which the mod-
els disagreed but one of the human annotators did not
identify the correct tag. We are left with 3685 words,
for which 𝜅 = 0.875.

Note, however, that while Cohen’s Kappa is a sym-
metric score, our two human annotators are of different
calibers. Hence we take the senior expert’s annotation

as the correct result (gold-standard), and measure the
accuracy of the junior expert’s annotation relative to
that of the senior expert. This will later be compared to
the accuracy of the automatic taggers. Calculated on
the same 3685 words stated above, the junior expert’s
accuracy in the wild was 0.908.

8.3 POS Tagger Evaluation
The accuracy statistics for the two POS taggers was
evaluated relative to the corrections of the senior ex-
pert, whose annotations are considered to be the cor-
rect ones. Despite the instruction to correct all cases
where at least one of the taggers was mistaken, there
were 32 cases (0.8%) where the two models disagreed,
but no correction was provided. On the remaining 3785
words, the accuracy of the two models was almost the
same and only slightly lower than the accuracy of the
human junior expert (Table 8). The real-world useful-
ness of the automatic taggers is highlighted when tak-
ing into account that it took the junior expert approxi-
mately 5.5 hours to complete this relatively limited task.

MarMoT chaR-cnn junior expert

88.85 88.92 90.80

Table 8: POS tagging accuracy, on Psalms 1-30, relative
to the correct tagging by the senior expert.

These results can be interpreted in several ways. A
favorable way to look at this is that the automatic mod-
els are almost as good as a medium-level human anno-
tator, and are therefore invaluable to the effort of an-
notating large amounts of text. A less favorable view is
that a less experienced human annotator is more sus-
ceptible to agree with subtle mistakes made by an au-
tomatic tagger, though they might provide the correct
annotation when facing a blank page. The easiest way
to confirm or reject the hypothesis that the RA is more
susceptible to being led astray by the automatic anno-
tations is to compare his accuracy on this Psalms file
to a similar number of annotations he made on a com-
pletely unannotated file. Unfortunately, that break-
down is not available. However, in support of this hy-
pothesis, we break down the mistakes made by the ju-
nior expert by whether or not the models agreed on the
annotation. We see that over 75% of the junior expert’s
mistakes were in cases where the models agreed, and of
those cases, over 70% are words where the junior expert
agreed with the automatic taggers, whereas the senior
expert chose a different tag. In light of these numbers,
it is important to emphasize to human annotators who
use the automatically generated tags that they must
look at the tags with a critical eye, and not assume that
the taggers “know” the truth.
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As is apparent from the results, there is almost no
difference in accuracy between the two models, despite
the fact that the models disagree on 11.2% of annota-
tions. The number of mistakes made by each of the
models is almost equal, with MarMoT being correct on
179words and chaR-cnn on 182words out of 429words
on which the models disagree, and an additional 35
words on which both models were wrong. An inter-
esting direction for future research is to characterize
the kinds of mistakes each model tends to make, and
explore ways to combine their strengths. Furthermore,
we note that in this real-world application to NAJA (i.e.,
texts that are not part of TAJA) the chaR-cnnmodel per-
formed a little better than its initial TAJA-based evalua-
tion (88.92% vs. 87.45%, see Table 3) while the MarMoT
model performed a little worse (88.85% vs. 89.17%).

9 Discussion and Conclusion

The pressing real-world challenge facing researchers of
Algerian Judeo Arabic (AJA) dialects is how to scale up
their linguistic analyses from individual texts to large
textual collections. The rich morphology of Arabic (as
of other Semitic languages) and scarcity of expert lin-
guists makes this complex and time-consuming task
impractical unless aided by automation. Hence, de-
veloping automatic taggers that would support real-
world linguistic analysis at scale and prove useful for
AJA linguists is the challenge we aim to tackle. Re-
flecting the linguists’ challenges, we focus on the per-
formance of the morphological tagger in tests that are
predictive of the real-world setting. For this reason, we
did not limit ourselves to purely automated approaches,
but also explored a hybrid human–machine approach,
wherein the human expert contributes to the automatic
approach.

The rich morphology of Arabic and its use of
morpho-syntactic affixes led us to focus on character-
based models (rather than word-based models), as
these can identify key morphemes that are essential
for annotating OOV words. Starting from a word-
based LSTM neural network architecture, we inte-
grated character-level information via either an LSTM
or a CNN. Subsequently we explored a two-tier hier-
archical approach to morphological tagging with POS
tags at its base and the morphology tags building on
that. This hierarchy mirrors the underlying character
of Arabic annotation, where each POS tag has a set of
legal morphological tags. The two-tier approach also
enables exploring a human-in-the-loop step in between
the two tiers. Our best performing strategy, denoted
AJATag for simplicity, is now available for use by AJA
linguists.8 To evaluate the usefulness of the AJATag

8https://github.com/technion-cs-nlp/
nlp4aja

strategy we compared it to the off-the-shelf POS and
morphological tagger, MarMoT, which is based on CRF.
All models were trained on the annotated TAJA corpus.

For the base task of POS tagging, we found that
among the evaluated neural network architectures, rep-
resenting a word using a CNN run on its characters
performed better than an LSTM or ignoring the char-
acters altogether. Training on the TAJA corpus, the
POS accuracy of the chaR-cnnmodel was 87.4±0.58%.
This accuracy is only slightly lower than the 89.17%
accuracy obtained by MarMoT for this task. The 1.5%
difference suggest essentially similar performance for
the two models in a real-world setting. Morphology
tagging, as indicated above, is the most challenging
and time-consuming task that takes up 80% of the ex-
pert linguist annotation time. Here, too, chaR-cnn per-
formed better than the other neural network models we
explored, especially in a two-tier hierarchical approach.
The accuracy of this model, denoted herein as ‘hierar-
chical chaR-cnn (predicted POS)’, ranges from 81% to
91% for the different morphology analysis fields (anal-
ysis1, analysis2, additional tags). To further improve the
performance, we allowed for human input between the
two tiers in the form of manual correction of POS tags.
Using ‘true POS’ assignments, instead of the predicted
assignments, further improved the performance of the
‘hierarchical chaR-cnn (true POS)’ morphology tagger.
We denote this hybrid strategy AJATag and have com-
pared its performance on AJA to MarMoT. We use Mar-
MoT as is, without modifications or adaptations to a
hybrid setting, because for the linguists it is an off-the-
shelf tool that is to be used as is.

Evaluation of the morphological tagging by AJATag
demonstrated favorable performance across multiple
evaluation metrics:

• Field-by-field accuracy – AJATag accuracy for
the two main analysis fields (89.0%, 92.7%, re-
spectively) is higher by up to 7% compared to
MarMoT’s accuracy (82.3%, 85.6% respectively).
It should be noted that the greatest gain in ac-
curacy is in analysis1, which of the morphologi-
cal analysis fields is the richest and most difficult
to assign. Both approaches perform well identi-
fying the enclitic field with an accuracy greater
than 96%.

• Overall accuracy – We evaluate the overall ac-
curacy of the morphology taggers using a ‘flex-
ible’ score, which best mimics real-life useful-
ness of the tagger as it counts each correct tag
separately. The overall accuracy of AJATag was
91.2%, a little over 2% better than MarMoT
(89.0%).

• Accuracy for words with legal tag combina-
tions – In TAJA each POS tag has a set of le-
gal values for morphological tags. However, both
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taggers end up assigning a significant percentage
of the words with illegal tag combinations. It is
noteworthy, however, that for words that were
tagged with legal tag combinations (which are
themajority at over 80%) the accuracy of AJATag
went up by 4% to 95.2%, while the accuracy of
MarMoT was essentially unchanged.

• Out of Vocabulary accuracy – Perhaps the
most important predictor for future real-world
performance of any tagger is its success with
words that are out of vocabulary (OOV), espe-
cially as OOVwords account for 21% of the TAJA
test set. When using predicted POS tags with our
hierarchical chaR-cnnmodel, the accuracy on the
challenging analysis1 field for OOV words was
57.72%, better than MarMoT by approximately
2% (it also performed better on POS tagging of
OOV words with 72.58% vs. MarMoT’s 71.35%).
However, this important performance indicator
is where our hybrid AJATag strategy delivered its
most important fruits. The accuracy of AJATag
in the challenging task of morphologically tag-
ging OOV words is 74.91% and 78.42% for the
analysis1 and analysis2 fields, respectively, which
is significantly better than MarMoT’s OOV tag-
ging for these two fields (55.82% and 59.95%, re-
spectively). AJATag also performs much better in
the additional tags field for OOV words (85.4%
compared to MarMoT’s 75.0%).

The justification for the hybrid approach explored
herein is in its real-world usefulness, outside of the NLP
lab. The 56%–60% accuracy of the off-the-shelf solu-
tion for the two most important morphological fields,
analysis1 and analysis2, when applied to OOV words
is not sufficient for real linguistic work. In contrast,
the hybrid AJATag strategy achieved an accuracy level
of 74.91%–78.42% on morphological tagging of OOV
words, which is expected to be useful for real-world ap-
plications, improving upon MarMoT by 18%–19% for
this task on both analysis fields. It is reassuring that
even without the added human input, our fully au-
tomated hierarchical chaR-cnn performed better than
MarMoT on POS and analysis1 tagging of OOV words.
The value of the AJATag strategy was further confirmed
by other performance indicators, including its overall
accuracy and its accuracy on words with legal tag com-
binations, as defined above.

To assess the feasibility of the human interface ele-
ment in AJATag, we performed a real-world evaluation
of this process. The first-tier POS output was given to
two AJA linguists to correct, before moving on to the
second-tier morphology tagging. POS tags manually
corrected by a senior expert were perceived as the ‘true’
POS assignment, to which the performance of the au-
tomatic taggers as well as the corrections by a junior

expert were compared. It is reassuring that both auto-
mated taggers, our chaR-cnn model and MarMoT, per-
formed well at an almost identical accuracy (~89%) rel-
ative to the ‘true’ POS, an accuracy quite similar to the
91% accuracy by the junior expert, who is a PhD candi-
date with several years of experience in AJA linguistics.

To conclude, while not perfect, the hybrid AJATag
approach provides AJA linguists with a working solu-
tion that already impacts their real-world workflow in
a way that off-the-shelf tools cannot provide. In the fu-
ture we plan to continue improving these tools by ad-
dressing limitations such as tagging words with illegal
tag combinations. Nonetheless, we believe that even in
its current form AJATag could prove useful to linguists
as they take on the task of analyzing large untagged
AJA corpora. We hope that in the future we will be
able to expand the utility of these tools to other Judeo-
Arabic dialects.
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A Data
In this appendix, we detail the transliteration scheme
for JA texts used in this paper (Table 9). This table only
covers the consonants in JA, as the pronounciation of
the vowels in text is not always known.

We also show some of the tag sets used in TAJA. We
detail all the POS tags (Table 10), and themorphological
tags of the more prominent POS tags (Tables 11, 12, 13
and 14).

Hebrew letter Transliteration

א ʾ
ב b
ג' ǧ
ג ġ
ד d
ה h
ו w
ז z
ח ḥ
ט ṭ
י y
כ k
כ' x
ל l
מ m
נ n
ס s
ע ʿ
פ f
צ ṣ
צ' ḍ
ק q
ר r
ש š
ת t

Table 9: Transliteration table for Hebrew (JA) letters.

POS code Hebrew POS POS

שע עצם שם noun
פע פועל verb
מל מילית particle
שת תואר שם adjective
שפ פרטי שם proper noun
מס מספר number
כג גוף כינוי pronoun
כר רמז כינוי demonstrative
כז זיקה כינוי relative pronoun
תפ הפועל תואר adverb
הצ הצגה presentative
תז זמן תיאור temporal adjunct
תמ מקום תיאור locative adjunct
רת תיבות ראשי acronym

Table 10: Legal POS tags in TAJA.
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Nouns

analysis1
code

analysis2
code

additional
tags code

זכר masculine יחיד singular NA
נקבה feminine רבים plural
עברי Hebrew זוגי dual
ארמי Aramaic
לועזי foreign

Table 11: Legal morphological analyses for nouns.

Verbs

analysis1
code

analysis2
code

additional
tags code

(בניין) (derived stem) (זמן) (tense) (גוף) (person)
בנ1 I עב perfect י1 1s
בנ2 II עת imperfect יז2 2sm
בנ3 III צו imperative ינ2 2sf
בנ4 IV בפע passive participle יז3 3sm
בנ5 V בפו active participle ינ3 3sf
בנ6 VI מצ verbal noun ר1 1p
בנ7 VII לפעול infinitive רז2 2pm
בנ8 VIII רנ2 2pf

בנ10 X רז3 3pm
nבנ passive stem רנ3 3pf

related to VII יחיד participle sm

tבנ
passive stem יחידה participle sf
with a t/tt prefix רבים participle pm

רבות participle pf

Table 12: Legal morphological analyses for verbs.

Adjectives

analysis1
code

analysis2
code

additional
tags code

יחיד singular masculine עברי Hebrew NA
יחידה singular feminine ארמי Aramaic
רבים plural masculine לועזי foreign
רבות plural feminine

Table 13: Legal morphological analyses for adjectives.

Proper Nouns

analysis1
code

analysis2
code

additional
tags code

אדם person משוערב Arabized NA
מקום place מתורגם translated
עם people עברי Hebrew

האל God

Table 14: Legal morphological analyses for proper nouns.
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B Experiments
After determining that the chaR-cnn model is the best
of the three options, we conducted hyperparameter
tuning by k-fold cross-validation (𝑘 = 5). The hyper-
parameters that we wanted to test are summarized in
Table 15, where the reported statistics and standard
deviation are over the folds. Rather than report the
mean for each hyperparameter test, we report differ-
ence between the base configuration result and the hy-
perparameter result. The value of each hyperparam-
eter in the base configuration appears in parentheses
following the name of the hyperparameter. As we are
attempting to optimize a large number of hyperpa-
rameters, grid search was deemed unfeasible (with a
Cartesian product of over 23k hyperparameter combi-
nations). Instead, we test each hyperparameter sepa-
rately against the base configuration. However, we saw
no significant differences between various configura-
tions. This is evident from the table, as in most cases,
the results for the tested hyperparameters are within
one standard deviation of the base configuration result.
Therefore, we continue conducting all our experiments
using the original base configuration.
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Hyperparameter value micro average std num epochs
accuracy (mean) (mean)

base configuration NA 0.8908 0.0058 13

batch size (8)
4 -0.0023 0.0069 12.6

16 -0.0034 0.0048 12

directions (2) 1 -0.0004 0.0042 15.2

dropout (0.5)
0.0 -0.0041 0.0036 11.6
0.3 -0.0048 0.0083 11.8
0.7 -0.0031 0.0079 13.4

learning rate (0.1)
0.01 -0.0007 0.0050 12.8
0.05 +0.0009 0.0047 13.4
0.5 -0.0022 0.0099 12.8

kernel width (6)
4 -0.0046 0.0048 14.2
8 -0.0053 0.0086 11.2

num kernels (500)
250 -0.0054 0.0049 13.2

1000 -0.0019 0.0099 12.4

char embedding 10 -0.0092 0.0081 15
dim (25) 50 <-0.0001 0.0045 11.2

word embedding 50 -0.0009 0.0047 13.8
dim (100) 200 +0.0013 0.0027 13.2

hidden dim (100)
50 -0.0009 0.0060 13.6

200 -0.0006 0.0039 12.6

Table 15: Summary of hyperparameter tuning (base configuration value in parentheses.)
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