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Abstract There is a growing awareness that many NLP systems incorporate biases of various types (e.g., regarding gender or race)
which can cause significant social harm. At the same time, the techniques often used for the statistical analysis of biases in NLP
systems are still relatively basic. Typically, studies test for the presence of a significant difference between two levels of a single bias
variable (e.g., gender: male vs. female) without attention to potential confounders, and do not quantify the importance of the bias
variable. This article proposes to analyze bias in the output of NLP systems using multivariate regression models. Such models provide
a robust and more informative alternative which (a) generalizes to multiple bias variables, (b) can take covariates into account, (c) can
be combined with measures of effect size to quantify the size of bias. Jointly, these effects contribute to a statistically more robust
identification and attribution of bias that can be used to diagnose system behavior and extract informative examples. We demonstrate
the benefits of our method by analyzing a range of current NLP models on two tasks, namely one regression task (emotion intensity
prediction) and one classification task (coreference resolution).

1 Introduction

Machine learning has been a major driver of innovation
in natural language processing since the 1990s, but only
the last decade has seen the widespread deployment of
NLP methods for use by non-experts: Applications such
as neural machine translation (Wu et al., 2016) or voice
assistants (Këpuska and Bohouta, 2018) are now rou-
tinely available through end users’ mobile phones, and
NLP methods are increasingly used in domains outside
computer science such as police work (Sun et al., 2021)
and recruiting (Singh et al., 2010).

Such systems are, from a user perspective, black
boxes whose predictions are generally taken at face
value. This makes the question pertinent to what ex-
tent the machine learning methods underlying these
NLP models are fair, or, on the contrary, to what ex-
tent they are subject to biases which impact their pre-
dictions. More formally, Friedman and Nissenbaum
(1996) defined biased computer systems as systems that
“systematically and unfairly discriminate against certain
individuals or groups of individuals in favor of others”;
(see Mehrabi et al. (2021) for a very similar definition).
Clearly, such biases have the potential to cause concrete
harm for the disadvantaged groups or individuals (Ben-
der and Friedman, 2018; Blodgett et al., 2020) and must

be observed and controlled as far as possible.

A practical aspect of bias analysis, which the above
definition leaves open, is whether discrimination is mea-
sured “in vitro” (at the level of system performance) or
“in vivo” (at the level of real world consequences). In line
with the majority of NLP studies on bias, the present
study focusses on bias measured “in vitro”, i.e., in the
form of systematic differences in system performance
across groups. We acknowledge the need to better un-
derstand how such “in vitro” bias translates into “in
vivo” real-world consequences, and argue below that
the methods we propose offer a first step in this direc-
tion.

A quickly growing body of studies has indeed found
that biases are, unfortunately, pervasive in NLP systems
(Mehrabi et al., 2021). One of the first studies on bias,
Bolukbasi et al. (2016) analyzed similarity relations in
word embeddings and found a substantial gender bias, as
a result of which, e.g., woman was more similar to nurse
than doctor, while man was more similar to doctor than
nurse. Davidson et al. (2019) found systematic and sub-
stantial racial biases in five Twitter datasets annotated
for offensive language detection, where African Ameri-
can English tweets were overclassified as hateful com-
pared with Standard American English, and Díaz et al.
(2018) found a significant age bias in many sentiment
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analysis algorithms, attributing less positive attitudes to
older participants. See Section 2 for more details.

Consequently, dealing with biases is rapidly becom-
ing amajor high-level consideration in the design and de-
velopment of NLP systems. The three main bias-related
tasks are (a) bias identification (is bias present?), (b) bias
attribution (where does the bias come from?) and (c) bias
mitigation (how to minimize the bias?). In this article,
we focus on the first two tasks, bias identification and
attribution.

Following the definition given above, the identifi-
cation of “in vitro” bias involves the establishment of
systematic differences in system performance between
two parallel stimuli sets for different levels of a bias vari-
able such as gender or race. Put simply, the question is:
Does, e.g., the gender of an author have a systematic
influence on the output of an NLP system (e.g., are texts
written by women predicted to be less positive?), or on
the quality of the NLP system? (E.g., are text written by
women analyzed less reliably?)

This question can be answered using statistical anal-
ysis techniques of increasing complexity, shown in Table
1. To our knowledge, all existing studies on bias fall into
either the first or the second group. Studies in the first
group only quantify the performance differences. For in-
stance, studies investigating gender bias have generated
predictions for sentence pairs which differ only in gen-
dered expressions (e.g., cf. Table 2) and reported the dif-
ference between these sets (Zhao et al., 2018; Stanovsky
et al., 2019). Without considering between-system and
between-item variance, it is not clear that such differ-
ences are indeed systematic, as required by the defini-
tion of bias from above. For this reason, studies from
the second group additionally carry out hypothesis tests,
typically t-tests, to assess the statistical significance of
the differences (Kiritchenko and Mohammad, 2018).

Although this procedure is conceptually simple and
straightforward, it is problematic for two reasons. First,
the pairwise hypothesis tests that are being employed in
existing work assume that differences between the two
sets of stimuli are due to the selected bias variable. They
cannot ensure that the putative effect of bias is not due
to a covariate that acts as a confounding variable (Mc-
Namee, 2005). For instance, studies on gender bias often
use sets of male and female names as part of their stim-
ulus sets (cf. Table 2). Across genders, these names may
differ in the average age of the bearer, or simply in their
frequency in texts, both of which may influence the per-
formance of NLP systems (Díaz et al., 2018; Gerz et al.,
2018). Similarly, author gender may be correlated with
topic (Schmid, 2002; Schwemmer and Jungkunz, 2019),
which can also have an impact on analyses. Therefore,
even when an analysis of performance differences by
gender may yield a significant performance difference,
it is advisable to rule out that there are competing ex-

planations of the difference in performance in terms of
other factors.

Second, bias studies in NLP currently generally test
for statistical significance, but very few considermodel fit
and effect sizes (with the notable exception of (Caliskan
et al., 2017)). Significance ensures that an identified ef-
fect is not a random fluke, but does not quantify how
much of the variance in the predictions is due to the
bias. Given a sufficiently large dataset, even very small
differences that are not practically relevant can reach
significance. In contrast, the computation of effect sizes
permits users to understand the practical impact of bi-
ases (Sullivan and Feinn, 2012), and is therefore arguably
a first step moving from bias “in vitro” towards bias “in
vivo”.

In this article, we propose that these two limitations
can be alleviated by adopting multivariate regression
models such as linear and logistic regression for bias iden-
tification. This solution has already become standard in
neighboring disciplines like linguistics and psychology.
In regression models, bias variables and their covariates
form the independent variables, and the predictions of
NLP systems for corresponding instances constitute the
dependent variable of the equation. As the last column
in Table 1 presents, multivariate regression models have
many advantages over the other two approaches for bias
analysis: (a), they generalize to multiple bias variables;
(b), they offer a principled treatment of covariates; (c),
they come with measures of effect size that quantify the
size of the bias, and (d), they provide a rich diagnosis
of system behavior and can be mined easily to extract
informative datapoints. In NLP, regression models of
various kinds have been used widely as predictive mod-
els. In our paper, we focus on their use as explanatory
models, where the focus is on building an interpretable
model. Models of this type have been applied to analyze
the influence of task and data properties on the perfor-
mance of sequence labeling models (Papay et al., 2020)
or the influence of various textual properties of author
responses on the peer review process (Gao et al., 2019).
We would like to stress that the goal of this procedure
is not to “explain away” biases, but rather to propose a
more stringent procedure to identify them, in order to
strengthen their empirical standing.

Our concrete contributions are as follows:

• We identify limitations of the statistical methods
that are currently applied for bias identification
(Section 1).

• We propose a workflow and a set of best practices
for designing, computing and interpreting multi-
variate regression models for this task (Section 3).

• We apply our workflow to two tasks: emotion
intensity prediction, a regression task (Section 4)
and coreference resolution, a classification task
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Performance Difference Performance Difference
plus Hypothesis Testing

Regression Modeling
with Effect Sizes

(Rudinger et al. 2018, Zhao
et al. 2018, etc.)

(Caliskan et al. 2017,
Kiritchenko et al. 2018, etc. )

(Ours)

Assessing statistical significance - + +
Quantifying the impact of multiple variables - - +
Diagnosing system behavior + + +

Table 1: Comparison of different approaches to statistical analysis of bias.

(Section 5). Our results are in line with established
findings, but permit a more nuanced and richer
understanding of system behavior.

The complete code for our experiments is pub-
licly available at https://github.com/multireg/
multireg-effect.

2 Related Work

This section sketches the state of the art in bias analysis,
More comprehensive reviews are provided by Sun et al.
(2019), Blodgett et al. (2020) and Mehrabi et al. (2021).

Bias in embeddings. At the representation level,
almost all state-of-the-art NLP systems use corpus-
derived embeddings. These embeddings were the start-
ing point for a lot of work on bias in NLP. Bias in em-
beddings is generally shown by comparing embeddings
for two sets of previously established, e.g., gendered
(male and female) words (e.g. man, woman). Boluk-
basi et al. (2016) define the gender bias of a word by its
projection on the difference vector between male and
female embeddings; this method was found by Gonen
and Goldberg (2019) to be an imperfect metric of bias.
As an alternative, the WEAT benchmark (Caliskan et al.,
2017) defines bias in terms of similarity to the two sets
of gendered words and uses a statistical hypothesis test
to assess the statistical significance of the difference.
Later, WEAT was used for measuring other bias types
(e.g. Race) as well. Caliskan et al. (2017) in fact use effect
sizes as a metric, but this was not taken up by follow-up
work in NLP such as Gonen and Goldberg (2019).

Going beyond gender, Garg et al. (2018) analyzed eth-
nic biases in historical embeddings covering 100 years
of language use. Swinger et al. (2019) showed that word
embeddings of names reflect broad societal biases that
are associated with those names, including race, gen-
der, and age biases. Comparable biases also have been
demonstrated in multilingual embeddings (Lauscher
and Glavaš, 2019; Zhao et al., 2020). The perspective
on types and sources of bias is continuing to broaden;
Hovy and Prabhumoye (2021) propose a taxonomy of
five sources of bias in NLP systems, namely the data,

the annotation process, the input representations, the
models, and the research design.

Bias in NLP systems. At the system level, bias has
been investigated in applications including named en-
tity recognition (NER), Machine Translation (MT), Senti-
ment Analysis, and Coreference Resolution. Kiritchenko
and Mohammad (2018) examined 219 sentiment analy-
sis systems and found that a majority exhibits gender
and race biases. Mehrabi et al. (2019) reported that NER
models recognize male names with higher recall com-
pared to female names. Rudinger et al. (2018) and Zhao
et al. (2018) showed that coreference resolution systems
perform unequally across gender groups by associating
occupations (such as doctor and engineer) more with
men and others (like nurse) more with women. Similarly,
Stanovsky et al. (2019) found that both commercial and
academic MT models are at risk of generating transla-
tions based on gender stereotypes rather than the actual
source content.

Bias in systems is usually measured by using bench-
marks datasets for specific tasks with a one-factor de-
sign which are created to be as balanced as possible
while varying the levels of the bias variable. Examples
include WinoBias (Zhao et al., 2018) and WinoGender
(Rudinger et al., 2018), two benchmarks for gender bias
in coreference resolutionwhich contrast “pro-stereotype”
cases (the correct antecedent of a pronoun is convention-
ally associated with the pronoun’s gender) and “anti-
stereotype” cases (opposite situation); GAP (Webster
et al., 2018), a dataset for the same task described in
detail in Section 5; and the Equity Evaluation Corpus
(EEC, Kiritchenko and Mohammad (2018)), developed to
analyze gender and race bias in sentiment analysis and
described in detail in Section 4. Bias is then quantified
by measuring the differences in performance between
these levels. Sometimes, but not always, the differences
are subsequently tested for statistical significance, e.g.
t-tests. To our knowledge, almost no studies on system-
level bias have considered covariates, nor computed ef-
fect sizes, whichmakes them vulnerable to the criticisms
outlined in Section 1.

An exception is a recent study Feder et al. (2021)
which, like ours, disentangles bias from confounding
factors. However, instead of performing correlational
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analysis of model predictions, they aim at full-fledged
causal analysis. Since causal relations can often not be
recovered from data (Pearl, 2009), they assume that a
causal graphmodeling dependencies between predictors
are given by a domain expert and show how to fine-
tune contextualized embedding models with adversarial
training to minimize bias. Thus, the two studies take
complementary approaches: Feder et al. (2021) applies
to model construction, while our study carries out black-
box analysis of existing models.

BiasMitigation. There are twomain families of meth-
ods to mitigate bias at the representation level. Ap-
proaches from the first family create a modified version
of the original data set that is biased in the opposite di-
rection, training models on the union (Park et al., 2018;
Zhao et al., 2019; Stanovsky et al., 2019). Approaches
from the second family mitigate bias by transforming
learned embeddings according to some balancing objec-
tive (Lauscher and Glavaš, 2019; Kaneko and Bollegala,
2019; Dev et al., 2020; Kaneko and Bollegala, 2021a,b).

At the system level, Zhao et al. (2017) proposed to
constrain model predictions to follow a distribution from
a training corpus. Rather than constraining the output,
some of the previous work such as Elazar and Goldberg
(2018); Zhang et al. (2018) and Kumar et al. (2019) used
adversarial learning to remove unintended bias from the
latent space during model training. Adjusting the loss
function is another popular system level approach for
bias mitigation. For instance, Qian et al. (2019) intro-
duces a new term to the loss function to equalize the
probabilities ofmale and femalewords in the output, and
Jin et al. (2021) introduce a regularization term which
reduces the importance placed on surface patterns.

Note that almost all mitigation methods require
knowledge about which variables are (potentially) in-
troducing bias, underlining the importance of reliable
identification of bias variables.

3 Bias IdentificationWith Regres-
sion Models: A Workflow

Following the discussion in the previous sections, the
task of (“in vitro”) bias identification is to establish that
a bias variable – in contrast to other covariates which
act as confounders – is primarily responsible for sys-
tematic variance in an observed variable, namely the
performance of some computer system.

This is, of course, a very general task that arises
in many empirical fields. A prominent family of tech-
niques to address this task is matching (Rubin, 1973),
which aims at generating two datasets that differ in the
bias variable, but are as close as possible in their distribu-
tion over the covariates, so that any difference between

the two datasets can be attributed to the bias variable.
Matching is widely used in social sciences, economy, and
medicine and many specific methods exist; see Stuart
(2010) for an overview.1

Importantly, matching takes place a priori, before the
experiment is carried out. This poses two challenges for
applications in natural language processing: (a), dataset
creation is dependent on the selection of covariates, so
that it is not possible to assess the impact of new covari-
ates on existing datasets without loss of comparability;
(b), matching samples from the set of all datapoints,
creating controlled rather than natural datasets, which
may conflict with the desideratum of estimating model
performance in broad-coverage scenarios.

The alternative is to carry out a post-hoc analysis
that assesses the effects of the various covariates. The
intuition is to start from a simple pairwise comparison
of two levels of a bias variable (cf. the first and second
column in Table 1) and add covariates to see whether the
effect of the bias variable remains unaffected. This pro-
cedure has become standard in the last decade in neigh-
boring fields like linguistics and psychology which have
moved from significance tests (Student’s t-test, analy-
sis of variance) to the family of multivariate regression
models (Bresnan et al., 2007; Baayen, 2008; Jaeger, 2008;
Snijders and Bosker, 2012). Regression models estimate
the relationships between the dependent (previously
called observed) variable – in this case, system perfor-
mance – and one or more independent variables – in this
case, the putative bias variable and its covariates, each
of which is assigned a direction and a significance. Since
dataset creation is dependent from covariate analysis,
regression models can be used to test new candidates
for confounders on existing datasets.

At this point, it can be whether the fundamentally
linear regression models are the right tool for the job,
in particular given the broad success of non-linear deep
learning models in NLP over the last years. We believe
that it makes sense to distinguish carefully between the
task of output prediction (given language input, predict
language output) on which non-linear models indeed
excel and the task of performance prediction (given [meta
data for an] input and a model, predict how well the
model does on the input). The latter is a considerably
simpler problem which permits the use of linear models,
as evidenced by a number of successful studies taking
this approach (Beinborn et al., 2014; Papay et al., 2020;
Caucheteux and King, 2022).

This section provides a practical workflow to set up
a regression model for bias analysis, shown in Figure
1. Our starting point is the presence of a dataset with
system predictions. Step 1 is the selection of an ap-
propriate regression model. In Step 2, we choose a set

1Note that the term bias is used differently in the matching litera-
ture, namely as the effect of confounders on the observed variable.
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Starting Point

Dataset

Step 4:
Model Analysis with
Fit and E!ect Sizes

Predictions

Step 1:
Linear/Logistic
Mode Choice

System

Step 3:
Model Validation

Step 2:
Predictor Selection

Other
Covariates

Figure 1: Workflow for regression-based bias analysis

of predictors with the potential to systematically influ-
ence the predictions of the systems, (i.e., the putative
bias variable and plausible confounders) and carry out
a regression analysis. Next, Step 3, model validation,
ensures that the regression model is well specified and
interpretable. Finally, Step 4 utilizes effect size analysis
methods to explore how much of the system predictions
can be attributed to the influence of the predictors.

Running example. We will illustrate the steps of the
workflow on an actual (non-NLP) example, namely the
effect of smoking on mortality, a topic of long-running
interest in public health that has been analyzed exten-
sively with regression models. The most basic finding is
that smoking, overall, causes a strong increase in mor-
tality (Doll et al., 2004). Why it is still reasonable to
carry out a regression analysis in this case is that other
lifestyle choices (alcohol consumption, diet, etc.) also
presumably influence mortality, but exhibit correlations
(Padrão et al., 2007). These are sometimes surprising –
e.g., Tjønneland et al. (1999) found a correlation between
wine and healthy diet. At the same time, approaches like
matching are not applicable since the lifestyle properties
of the participants cannot be influenced retroactively.

3.1 Step 1: Choice of Regression Model
The most common two forms of regression analysis are
linear regression and logistic regression. When used
to analyze the output of computational models, linear
regression is appropriate to analyze the output of re-
gression tasks, and logistic regression for the output of
classification tasks.

Linear regression predicts the outcome of a con-
tinuous random variable 𝑦 as a linear combination of
weighted predictors 𝑥𝑖 :

𝑦 ∼ 𝛼1𝑥1 + · · · + 𝛼𝑛𝑥𝑛 (1)

where the coefficients 𝛼𝑖 can be interpreted as the
change in𝑦 resulting from a change in predictor 𝑥𝑖 , keep-
ing the other predictors constant.2

In contrast to linear regression, logistic regression
does not model the outcome of the binary random
variable 𝑦 directly. Instead, it models the probability
𝑃 (𝑦 = 1), assuming that 𝑃 (𝑦 = 1) stands in a linear
relationship to the logistically transformed linear com-
bination of weighted predictors:

𝑃 (𝑦 = 1) ∼ 𝜎 (𝛼1𝑥1 + · · · + 𝛼𝑛𝑥𝑛) (2)

where 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ) is the logistic function. Here,
the coefficients 𝛼 can be interpreted as the change in
the logit for a unit change in the predictor.

Both types of regression support continuous, binary,
and categorical predictors; the latter type is generally
represented as a set of binary indicator predictors. As
indicated above, these models assume that the predic-
tors have an additive effect on the dependent variable
(in the linear case) or its logit (in the logarithmic case).

Running example. In our mortality example, the out-
come of the regressionmodel is (some variant of) a death
rate. Depending on the exact choice of measure, it might
be appropriate to choose a linear regressionmodel, when
the death rates are approximately normally distributed
(Gardner, 1973); or it might be appropriate to choose a
logistic regression model, when the death rates can be
interpreted as probabilities (Zhu et al., 2015b).

3.2 Step 2: Selection of Predictors
Maybe the most central step in the use of a regression
model for bias analysis is the selection of the set of
predictors for the regressionmodel – that is, the putative
bias variable and a set of plausible confounders to assess
the respective roles of these variables in explaining the
variance of the dependent variable.

2If the dependent variable is not (approximately) normally dis-
tributed, other types such as Poisson or negative binomial regression
may be more appropriate.
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This task is the responsibility of the user and typi-
cally involves domain knowledge. Typically, a user car-
rying out a bias identification analysis will have one (or
a small number) of bias variables in mind, but need to
select plausible confounders.

The five primary sources of bias variables given by
Hovy and Prabhumoye (2021) can also serve as sources
of confounders. The most straightforward of these
are data and input representations, that is, properties
of the text underlying the model, many of which are
known to impact model performance. For example, low-
frequency words and classes are modeled less reliably,
longer stretches of text are harder to analyze, and so on
(Poliak et al., 2018; Dayanik and Padó, 2020). Similarly,
differences among annotators (age, social and cultural
background, task familiarity) can impact model perfor-
mance through labeling decisions (Sap et al., 2019), and
obviously design decisions of the system, such as the
choice of neural network architecture, contribute as well
(Basta et al., 2019). Hovy and Prabhumoye’s fifth cate-
gory of research design is least relevant for our purposes,
since it is concerned with systematic gaps in the field
as such rather than analysis of individual studies.

Thus, for many problems, there will be a range of the-
oretically motivated covariates. The actual analysis will
proceed in an interlocking fashion between exploratory
data analysis based on domain knowledge – to identify
interesting candidates for covariates – and regression
modeling – to obtain statistically sound assessments of
these covariates. In practical terms, the limiting factor is
often that covariates need to be available as annotation
on the dataset under consideration. While this is often
relatively simple for the domains of input representa-
tion and systems, and doable for the domain of data,
only recently has natural language processing started
to record and analyze annotator properties (Sap et al.,
2019), and there is an inherent tension between insights
into annotation biases and annotator privacy. In some
cases, however, covariates can be obtained by automatic
or semi-automatic means. As an example, see our es-
timation of the typical age for the bearer of a specific
first name on the basis of census data in Experiment 1
below. Such approaches can ease the burden of data
collection, but the analysis should take into account the
uncertainty introduced by automatic annotation.

Running example. In our lifestyle example, the co-
variates ideally include as many lifestyle factors as pos-
sible (such as alcohol consumption, diet, exercise, oc-
cupational hazards) as well as environmental factors
(housing, climate) and personal factors such as family
history of certain diseases. In practice, again, only a
limited range of such factors is likely to be available.

3.3 Step 3: Model Validation
While regression models technically support arbitrary
covariates, strong correlations among predictors, so-
called multicollinearity, can distort the estimation of
coefficients to the point that predictors are suggested
to be significant when they are not, and vice versa (Mc-
Namee, 2005). Therefore, models should be checked for
the presence of multicollinearity. There is a wide range
of tests available, see Imdad Ullah et al. (2019) for a re-
cent overview. We use the so-called variance inflation
factor (VIF). VIF measures how much the variance of
a predictor’s coefficient is inflated due to correlations
with other predictors. The VIF is computed for each
independent variable 𝑉𝑖 as

VIFi = 1/
(
1 − R2

i
)

(3)

where R2
𝑖 is the correlation coefficient obtained when

predicting 𝛼𝑖 from all other predictors. Thus, the more
collinearity is present, the higher VIF𝑖 . VIF values of 4
or greater indicate severe multicollinearity, and values
above 2.5 call for further investigation (Salmerón et al.,
2018). In this case, a number of strategies are available,
including dropping covariates, dimensionality reduction,
and regularization methods (see Dormann et al. (2013)
for details).

Another possible component of model validation is
predictor (feature) selection based on an analysis of fea-
ture contributions. In many NLP tasks, irrelevant or
unimportant features are removed for reasons of effi-
ciency or to avoid overfitting (Li et al., 2009). In fields
like psychology, where models serve explanatory pur-
poses, predictor selection is discussed more controver-
sially (Barr et al., 2013; Bates et al., 2018). In bias analysis,
the goal is to test whether the effect of the putative bias
variable stands up to the addition of covariates – the
more covariates added to the model while retaining a
significant contribution of the bias variable, the stronger
the evidence for a specific role of the bias variable. For
this reason, we believe that regression based bias anal-
ysis should be carried out on a comprehensive set of
predictors, without feature selection (Barr et al., 2013).

Running example. In our lifestyle example, is it ar-
guably important to check for multicollinearity, since
the various covariates may be predictive of one another.
For example, cramped housing conditions and occupa-
tional hazards are strongly linked through the shared
cause of poverty (Hajat et al., 2015).

3.4 Step 4: Computing Model Fit and Ef-
fect Sizes

The coefficients 𝛼 computed by regression models (cf.
Step 1) are accompanied by indications of the confidence
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level at which they are different from zero (i.e., whether
the predictor has a significant effect). Furthermore, the
global quality of regression models can be assessed by
a number of statistics. Among them, we use goodness
of fit which describes the proportion of the variance in
the data that is explained by the independent variables
of a regression model. The goodness of fit of a linear
regression model is measured by 𝑅2:

𝑅2 =

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 (4)

where 𝑦𝑖 is the model’s prediction for data point 𝑖 and 𝑦
is the mean of the observations.

In logistic regression, there is no exact equivalent
of 𝑅2. Among several pseudo 𝑅2 measures that have
been proposed, Aldrich-Nelson pseudo-𝑅2 with Veall-
Zimmermann correction (𝑅2

VZ) most closely approxi-
mates the 𝑅2 in linear regression (Smith and Mckenna,
2013):

𝑅2
VZ =

2[LL(Null) − LL(Full)]
2[LL(Null) − LL(Full)] + 𝑁

2LL(Null) − 𝑁

2LL(Full) (5)

where LL(Full) and LL(Null) are the log-likelihood val-
ues for the model with all predictors and for the empty
model (without predictors), respectively.

Goodness of fit measures the overall ability of the
model to explain the dependent variable. Relative impor-
tance, on the other hand, refers to the contribution of
individual predictors (Achen, 1982). While assessment of
relative importance in linear models with uncorrelated
independent variables is simple (the impact of each pre-
dictor is its R2 in univariate regression), in real-world
datasets variables are generally correlated, as a result of
which their impacts are not additive (Grömping, 2006).
Lindeman-Merenda-Gold (LMG) scores (Lindeman et al.,
1980) and Dominance Analysis (Budescu, 1993) are two
popular techniques to figure out the individual contri-
butions to the 𝑅2 of the model of the predictors in linear
and logistic regression, respectively.

The LMG method adds predictors to the regression
model sequentially, and considers the resulting increase
in 𝑅2 as its contribution. Since this method depends on
the possible orders in which predictors are added, the
LMG score of a predictor 𝑥𝑘 when added to a model
with a set of predictors 𝑃 is defined as the average of
the increase in 𝑅2 when adding 𝑥𝑘 to all subsets of 𝑃
(Grömping, 2006):

seq𝑅2 (𝑀 |𝑆) = 𝑅2 (𝑀 ∪ 𝑆) − 𝑅2 (𝑆) (6)

LMG (𝑥𝑘 ) =
1
𝑛

𝑝−1∑︁
𝑗=0

∑︁
𝑆⊆𝑃

𝑛 (𝑆 )=𝑗

seq𝑅2 ({𝑥𝑘 }|𝑆)(
𝑝−1
𝑗

) (7)

where 𝑅2 (𝑆) corresponds to the goodness of fit mea-
sure of a model with regressors in set S (cf. Eq 1) and

seq𝑅2 (𝑀 |𝑆) refers to the increase in 𝑅2 when the re-
gressors from 𝑀 are added to the model based on the
regressors 𝑆 .

For logistic regression, there is again no direct coun-
terpart. We propose Dominance Analysis (Budescu,
1993) as ameasure of the relative importance of each pre-
dictor. Dominance analysis considers one predictor (𝑥𝑖 )
to completely dominate another (𝑥 𝑗 ) if 𝑥𝑖 ’s additional
contribution to every possible model which does not in-
clude these two predictors is greater than contribution
of 𝑥 𝑗 . In cases where complete dominance cannot be
established, general dominance can also be used. One
predictor generally dominates another if its average con-
ditional contribution over all model sizes is greater than
that of the other predictors (Azen and Traxel, 2009).

We propose the following interpretations for the re-
gression scores outlined above: (a) At the system level,
R2 and pseudo-R2 are indicators of the amount of vari-
ance in the system predictions that can be explained
by the predictors and measure the systematic bias of a
system. (b) At the predictor level, the significance of a
predictor indicates the presence of a specific bias, and its
effect size measures its practical impact ; (c) the sign of a
coefficient indicates the direction of a bias.

Regarding (b), an important difference between the
application of significance testing in bias analysis and
the usual use in NLP to compare competing models is
that in our case, null results are arguably informative:
they indicate the absence of a particular bias, according
to the standards of significance. Naturally, the usual
disclaimers regarding null results apply: care should be
taken to ensure that they are not the result of faults in
the experimental setup.

Running example. In our lifestyle example, the out-
come of this step is a better understanding of individual
risk factors, such as smoking, as opposed to the clus-
ter of ’smoking and associated factors’ that is obtained
from a simple smoker-vs.-non-smoker analysis. Such
an understanding is crucial to better assess the risk of
individual patients based on their individual risk profile
which might include compounding factors (high blood
pressure, alcohol consumption) or mitigating factors (ex-
ercise, healthy diet). Again, note that the goal of this
analysis is not to detract from the hazardous nature
of smoking, but to better estimate of the effects of the
relevant predictors on the outcome, namely mortality.

4 Experiment 1: Emotion Inten-
sity Prediction

We now employ regression models to reanalyze model
predictions on two experiments on standard datasets
from the bias literature using the workflow defined in
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Template

1. [PER] feels [EMO].
2. The situation makes [person] feel [EMO].
3. I made [person] feel [EMO].
4. [PER] made me feel [EMO].
5. [PER] found herself in a [EMO] situation.
6. [PER] told us about the recent [EMO] events.
7. The conversation with [person] was [EMO].
8. I saw [person] in the market.
9. I talked to [person] yesterday.
10. [PER] goes to school in our neighborhood.
11. [PER] has two children.

African American European American
Female Male Female Male

Ebony Alonzo Amanda Adam
Jasmine Alphonse Betsy Alan
Lakisha Darnell Courtney Andrew
Latisha Jamel Ellen Frank
Latoya Jerome Heather Harry
Nichelle Lamar Katie Jack
Shaniqua Leroy Kristin Josh
Shereen Malik Melanie Justin
Tanisha Terrence Nancy Roger
Tia Torrance Stephanie Ryan

Table 2: Sentence templates in EEC dataset (top) and
female and male first names associated with being
African American and European American (bottom).

[EMO]: an emotion adjective

Section 3.
Our first experiment is concerned with emotion in-

tensity prediction. This task aims at combining discrete
emotion classes with different levels of activation. Given
a tweet and an emotion, the task requires to determine
a score between 0 and 1 which is the intensity expressed
regarding an emotion. Emotion intensity prediction was
among the first NLP tasks to receive attention from a
bias angle, when Kiritchenko and Mohammad (2018)
found that among more than 200 emotion intensity pre-
diction systems, almost all were biased with regard to
gender or race. (In the remainder of the article, we will
use ’system’ to refer to models performing the task at
hand, and ’model’ to refer to the regression models we
use for analyzing the systems’ performance.)

4.1 Dataset and Previous Analysis

We use EEC, the same dataset used for the large-scale
bias analysis of sentiment analysis mentioned above
(Kiritchenko and Mohammad, 2018). EEC is a bias anal-
ysis benchmark created to evaluate fairness in sentiment
analysis systems. It consists of 11 sentence templates

train dev test task

EI-reg 1701 388 1002 EIP
EEC - - 2100 EIP
GAP - 2000 2000 CR

Table 3: Number of examples in the datasets used in
our emotion intensity prediction (EIP) and coreference

resolution (CR) experiments.

instantiated into 8,640 English sentences for four emo-
tions (anger, joy, fear, sadness). Instantiated templates
differ only in the name. 3 The dataset compares (a) male
vs. female first names, and (b) European American vs.
African American first names, using ten names of each
category. Table 2 shows examples of such template sen-
tences along with names that tend to belong to African
American or European American demographic groups.

Kiritchenko and Mohammad (2018) used the EEC
as a secondary test set for systems submitted to the
SemEval 2018 Task 1 (Mohammad et al., 2018). For each
system, they compared the average emotion intensities
across different demographic groups using t-tests. They
found that almost all systems consistently scored sen-
tences of one gender and race higher than another, but
bias directions were not consistent: e.g., some systems
assigned higher emotion intensities to African Ameri-
cans and lower ones to European Americans, while oth-
ers show the opposite behavior. This apparently random
behavior of the systems has no clear explanation and
arguably raises concerns about a possible role of ran-
domness in the analysis.

4.2 Systems

Since the predictions of the systems that participated
in SemEval 2018 Task 1 are not publicly available4, we
instead implement and analyze five systems ourselves.
Four systems represent the main architectures submit-
ted to the shared task (Kiritchenko and Mohammad,
2018): A SVM unigram baseline and three neural sys-
tems based on word2vec word embeddings. To extend
the model set to the current state of the art (2021), we
include a transformer-based architecture as fifth system.

Support Vector Machine (SVM) We implement the
unigram-based SVM used as baseline system in Moham-
mad et al. (2018).

3The EEC templates can also be instantiated using gendered noun
phrases, but since these are unspecific with regard to the race variable,
we focus on the version with proper nouns. This corresponds to the
race analysis of the original study.

4Personal communication with the authors of shared task.
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Convolutional Neural Network (CNN) Based on
Aono and Himeno (2018), this system predicts an in-
tensity score by first performing convolutions of differ-
ent sizes on input word embeddings, followed by max-
pooling and a shallow multi-layer perceptron (MLP).

Recurrent Neural Network (RNN) Our RNN is com-
parable to Wang and Zhou (2018). A two-layer BiLSTM
traverses the input. The final hidden states in both di-
rections from the final layer are concatenated and fed
to a fully connected layer.

Attention Network (ATTN) This system is based on
a CNN-LSTM architecture with attention similar to Wu
et al. (2018). The input is fed to a single-layer BiLSTM.
Next, an attention mechanismweights the hidden states,
which are then passed through a CNN. The outputs of
the CNN feature maps are concatenated and passed
through a pooling layer and two fully connected layers.

Transformer-Based Neural Network (BERT) This
system is based on the BERT𝐵𝐴𝑆𝐸 multilayer bidirec-
tional Transformer architecture (Devlin et al., 2019). It
adds a linear layer on top of BERT and uses the final
hidden state of the special [CLS] token as the latent
representation of the input tweet, inspired by May et al.
(2019).

We train and evaluate all the systems on the Anger
partition of the EI-reg corpus (Mohammad and Bravo-
Marquez, 2017) and EEC respectively. EI-reg was created
by querying tweets in three languages (English, Arabic,
Spanish) and for four emotions (Anger, Fear, Joy, Sad-
ness) with words that were associated with the emotion
at different intensity levels, such as angry, annoyed, irri-
tated for Anger. Table 3 shows data statistics for both
datasets.

4.3 Setup of the Regression Model
Bias Variable. In the EEC setup, the input sentences
differ only in the person names that are filled in. We use
the same two bias variables considered by the original
study, namely Race and Gender.

Covariates. Due to the minimalist nature of the tem-
plates, coupled with the fact that the only part of the
templates that is manipulated across conditions is the
names, there is a limited range of linguistic properties
that can systematically covary with bias. We consider
two that we consider promising candidates. The first
one is the (perceived) Age of a name is computed as the
mean age for each name from US Social Security data.5

5We use data from https://bit.ly/34cgjki and the method-
ology from https://bit.ly/30f8lps.

Example Properties Intensity
Gender Race Age Freq

Frank feels angry Male EA. Old 0.05 0.55
Alonzo feels angry Male AA. Old 0.24 0.48

Justin feels angry Male EA. Yng 0.27 0.46
Lamar feels angry Male AA. Yng 0.42 0.49

Jasmine feels angry Female AA. Yng 0.47 0.47
Ellen feels angry Female EA. Old 0.19 0.50

Table 4: Example sentences for the first template from
Table 2 with their properties (EA.: European American,
AA.: African American, Yng: Young). Intensity predicted

by the the RNN system.

We discretize age, using 40 as the young/old boundary,
following the assumption that ’older’ names occur in
different contexts than ’younger’ names. The second
covariate is the linguistic frequency of the name in the
training data, since low-frequency names have found to
be a source of low performance in NLP models (Dayanik
and Padó, 2020). Since no explicit frequencies are avail-
able for the Google News skipgram vectors (Mikolov
et al., 2013), we approximate frequency by vector length,
which correlates highly with frequency (Roller and Erk,
2016). This is different from the ’real world’ frequency
of the name, which arguably is less likely to reflect in
the behavior of an NLP model. Table 4 shows examples
from the EEC with their properties.6

Model Shape We analyze the intensities predicted by
our systems as in the original study, performing linear
regression analysis at the level of each template with
the following model:

Intensity ∼ Race + Gender + Age + Freq (8)

For Race, 1 means African American and 0 European
American. For Gender, 1 means male and 0 female. For
Age, 1 means young and 0 old.

Recall that on this task, there is no right or wrong
answers. Instead, the focus of interest is whether the
systems assign different intensities to a template depen-
dent on the properties of the instantiating name. If they
do not, none of the predictors will show a significant
effect; if they do, significant effects will emerge.

Model Validation. Table 5 shows the variance infla-
tion factors for the variables. Since only a single VIF
value is larger than 2.5, and only marginally so, we con-
clude that multicollinearity is not a problem.

6We also performed experiments using a non-discretized version
of age and including real-world frequency. We observed a substan-
tially similar outcome (same levels of significance, coefficient signs for
predictors, and almost the same overall 𝑅2 values).
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Race Gender Frequency Age

VIF 2.03 1.42 2.68 1.29

Table 5: VIF scores for the full set of variables.

CNN RNN ATTN BERT SVM

R
Coef. −0.010∗−0.010∗−0.002 −0.008 0.001

Abs. LMG 0.080 0.082 0.010 0.068 0.018
Per. LMG 0.42 0.47 0.06 0.48 0.03

G
Coef. 0.006 0.002 0.001 −0.001 −0.003∗∗∗

Abs. LMG 0.037 0.003 0.020 0.025 0.523
Per. LMG 0.20 0.02 0.12 0.18 0.86

A
Coef. 0.005 0.001 0.001∗−0.003 0.001

Abs. LMG 0.049 0.060 0.070 0.027 0.014
Per. LMG 0.26 0.34 0.40 0.19 0.02

F
Coef. 0.016 0.019 0.015 0.010 −0.001

Abs. LMG 0.023 0.029 0.073 0.021 0.048
Per. LMG 0.12 0.17 0.42 0.15 0.08

R2 model fit 0.19 0.17 0.17 0.14 0.60

Table 6: Regression-based bias analysis on EEC
(R = Race, G = Gender, A = Age, F= Frequency)

(Abs:Absolute, Per. Percentage)

4.4 Results
Table 6 shows the main results. (We omit intercepts
in the table). The columns correspond to systems, and
the rows describe the effects of bias variables for each
system. For each predictor, we show a coefficient, a
confidence level,7 and an LMG effect size score.

Overall results As discussed in Section 3, we treat
R2 as a measure of systematic bias in a system. Inspec-
tion of the R2 scores indicates that there is a certain
amount of systematic bias in all systems, but that the
three static-embedding neural systems do a very good
job (R2 between 0.17 and 0.19) compared to the SVM
(R2=0.60). BERT, the only neural system using contextu-
alized embeddings, does an even better job and contains
the least amount of systematic bias (R2=0.14).

Comparison among systems None of the neural
systems exhibits a significant gender bias, as the LMG
scores show. Unlike Gender, the Race variable is respon-
sible for the significant portion of the amount of variance
in the system predictions. The CNN and the RNN sys-
tems both show a significant race bias which accounts
of about 42–47% (LMG score: ∼ 0.08) of the variance in
the intensity predictions. Note that Age, even though it

7We use ∗ for 𝛼=0.05, ∗∗ for 𝛼=0.01, and ∗∗∗ for 𝛼=0.001.

misses significance, also accounts for 25–35% of the vari-
ation in intensity in the CNN and RNN. Interestingly,
the ATTN architecture shows a different picture: there
is a considerable amount of Age bias (40% of variance),
but a much smaller race bias; instead, this system shows
a frequency bias, which accounts for another 40% of the
variance. In the BERT system, none of the bias variable
achieve significance. In terms of relative contribution
of individual predictors, BERT is more similar to CNN
and RNN than to ATTN: Race is still making the largest
contribution to the overall bias of the system, with 48%.
The SVM differs strikingly: there are hardly any Race
and Age biases, but an extremely strong effect of gender
(86% of variance). Since this system does not use embed-
dings, the most likely source of this bias is the training
corpus (EI-Reg), as also pointed out by the authors of
the original study (Kiritchenko and Mohammad, 2018).

Interpretation While we can confirm the overall race
bias found by Kiritchenko and Mohammad (2018), our
picture differs substantially: (a) the direction of the bias
is consistent among systems: all neural systems pre-
dict lower intensity scores for African Americans; (b) we
do not observe a significant gender bias among neural
systems; (c) we achieve a richer understanding of the
systems’ predictions, by quantifying the role of these
factors, and by adding age and frequency into the pic-
ture.

Inspection of Examples Following up on (c), Table 4
presents three pairs of examples from the EEC dataset
with their associated intensity values, as predicted by
the RNN system. We have selected these instances to
highlight the usefulness of the regression model to iden-
tify interesting instances. They show that the effect of
Race variable (African Americans are assigned lower in-
tensities) can be nullified by age (third example) and
frequency (first and second examples). Such considera-
tions remain hidden in an analysis that simply compares
means between different groups of predictions.

5 Experiment 2: Coreference Res-
olution

Our second experiment analyzes several coreference
resolvers in order to show how the logistic regression
version of our approach can perform bias analysis on
classification models. We choose coreference resolution
as our task because of its established status in bias analy-
sis; previous work has established that bias, in particular
gender bias, is present in numerous coreference systems
(Webster et al., 2018; Rudinger et al., 2018; Zhao et al.,
2018). At the same time, coreference resolution, as a
discourse level task, is faced with more complex data
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Figure 2: Example from the GAP dataset.

than more local (i.e., sentence-level) tasks, with a cor-
respondingly larger set of potential confounders. We
re-analyze a well-known coreference resolution dataset
to verify the presence of gender bias in a manner that is
robust against possible covariates.

5.1 Dataset and Previous Analysis
We use GAP (Webster et al., 2018), a human-labeled
corpus of ambiguous pronoun-name pairs from English
Wikipedia snippets. Each instance in the corpus con-
tains two person named entities of the same gender and
an ambiguous pronoun that may refer to either, or nei-
ther. System clusters were scored against GAP examples
according to whether the cluster containing the target
pronoun also contained the correct name (True Positive)
or the incorrect name (False Positive). Figure 2 shows an
example from the GAP development set (more statistics
in Table 3).

In line with previous work (Webster et al., 2018),
we use the development set of GAP to carry out our
analyses. Below, we report overall system performance
on the complete development set, in line with previous
work. However, we exclude ≈200 instances from the
development set, for which the pronoun does not refer
to either of the two candidate named entities, from the
regression analysis, since this makes it impossible to
compute some of our covariates (cf. Section 5.3).

5.2 Systems
We experiment with six diverse coreference resolvers and
analyze their predictions with our approach. As trained
versions of all systems were publicly available, we did
not need to train any systems ourselves. All systems
except the BERT-based one were trained on the English
portion of the 2012 CoNLL Shared Task dataset (Pradhan
et al., 2012). It contains 2802 training, 343 development
documents, and 348 test documents. BERT𝑙𝑎𝑟𝑔𝑒 Joshi

et al. (2020) was pretrained on BooksCorpus (Zhu et al.,
2015a) and English Wikipedia using casedWordpieces
tokens (Schuster and Nakajima, 2012) and fine-tuned
on the 2012 CoNLL ST dataset.

Lee et al. (2013) This system is a collection of deter-
ministic coreference resolutionmodules that incorporate
lexical, syntactic, semantic, and discourse information,
incorporating global document-level information. The
system won the CoNLL 2011 shared task.

Clark and Manning (2015) This system uses a
feature-rich machine learning approach. It performs
entity clustering using the scores produced by two lo-
gistic classifier-based mention pair classifiers features.
Both mention pair classifiers use a variety of common
features such as syntactic, semantic and lexical features
for mention pair classification.

Wiseman et al. (2016) This was the first neural coref-
erence resolution system which showed that the task
could benefit from modeling global features about en-
tity clusters. It uses a neural mention ranker which is
augmented by entity-level information produced by a
RNN running over the cluster of candidate antecedents.

Lee et al. (2017) This was the first neural end-to-end
coreference resolution system that works without a syn-
tactic parser or hand engineered mention detector. It
uses a combination of Glove and character level em-
beddings learnt by a CNN to represent the words of
annotated documents. Next, the vectorized sentences of
the document are fed into a BiLSTM to encode sentences
and obtain span representations. The system also uses
an attention mechanism to identify the head words in
the span representations. Finally, the scoring functions
are implemented via two feed-forward layers.

Lee et al. (2018) This system is an extension of Lee
et al. (2017), which improves on two aspects. First, it uses
gated attention mechanism which allows refinements
in span representations; second, the system applies an-
tecedent pruning which alleviates the complexity of run-
ning on long documents. It formed the state of the art
for two years.

Joshi et al. (2020) SpanBERT is a variant of the BERT
transformer (Devlin et al., 2019) designed to better rep-
resent spans of text. It works by (1) masking contiguous
random spans, rather than random tokens, and (2) intro-
ducing a new objective function called span-boundary
objective (SBO) which forces the model to learn to pre-
dict the entire masked span from the observed tokens
at its boundary. BERT𝑙𝑎𝑟𝑔𝑒 trained with the SpanBERT
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Gender C_Freq C_Diff C_Single C_Same

VIF 1.03 1.03 1.88 1.02 1.53

Gender I_Freq I_Diff I_Single I_Same

VIF 1.03 1.04 1.58 1.04 1.24

Table 7: VIF scores for the predictors. C_: Correct, I_:
Incorrect

method improves the state of the art on many tasks
including coreference resolution.

5.3 Setup of the Regression Model

Bias Variable. As in the original study, we use Gender
as designated bias variable.

Covariates. In contrast to the first experiment, we do
not use Age and Race, since the GAP dataset contains
numerous named entities that are either not generally
known or fictional (such as "the Hulk"). Therefore, these
variables are either inapplicable or unknown to the typi-
cal annotator. Instead, use discourse-related properties
of the antecedents as covariates, since in the task of
coreference resolution the structural properties of the
discourse arguably play a role in the difficulty of the
task:

• Diff is the number of tokens between the named
entity and target pronoun, normalized by the max-
imal distance in the corpus;

• Single states whether the named entity is a single
word or an MWE;

• Same indicates whether the pronoun and named
entity are in the same sentence;

• Freq defines the log-transformed corpus frequency
of the entity, computed on the English Wikipedia
(en-wikipedia) released on 20th March 2019, nor-
malized by the maximal frequency in the corpus.
The frequencies for MWEs are calculated based
on the syntactic head of the expression.

Since the correct and the incorrect antecedent can differ
regarding these properties, each property exists twice.
We use the prefix C_for the correct and I_for the incor-
rect one. For gender, both antecedents have the same
gender by design. The bottompart of Figure 2 shows how
these covariates are initialized for the given example.

Model Shape We analyze the performance of the
coreference resolvers at the level of individual predic-

Male Female All Bias

Lee et al. (2013) 55.4 45.5 50.5 0.82
Clark & Manning (2015) 58.5 51.3 55.0 0.88
Wiseman et al. (2016) 68.4 59.9 64.2 0.88
Lee et al. (2017) 67.2 62.2 64.7 0.92
Lee et al. (2018) 75.9 72.1 74.0 0.95
Joshi et al. (2020) 89.9 87.8 88.8 0.98

Table 8: F1-Scores of resolvers on the GAP development
set (Bias=F1 Female / F1 Male)

tions using following logistic regression model:

p(Correct) ∼ 𝜎 (Gender+
C_Freq + I_Freq+
C_Diff + I_Diff +
C_Single + I_Single+
C_Same + I_Same)

(9)

where 𝜎 is the logistic function. p(Correct): is 1 if the
resolver matches the pronoun with the correct named
entity in corresponding instance and 0 otherwise. For
Gender, 1 means female and 0 male. For Single, 1 means
the entity is a single word, 0 otherwise. For Same, 1
means the entity is in the same sentence as the pronoun,
0 otherwise. We use Dominance Analysis to determine
relative importance of each predictor.

In this setup, the regression model predicts whether
each of the system predictions is correct or incorrect. To
the extent the correctness is affected by the properties of
the discourse captured by our predictors, we will obtain
significant effects; conversely, should the correctness be
fully random or dependent on properties independent
from our predictors, we will not see significant effects.

Model Validation Table 7 shows the results of mul-
ticollinearity analysis on the set of predictors. All VIF
values are smaller than 2, which indicates the absence
of problematic multicollinearity.

5.4 Results
Table 8 shows the performance of six resolvers on the
complete GAP development set (overall and separately
for Male and Female). It probably does not come as
a surprise that performance increases over time; it is
positive to note, though, that the Bias decreases corre-
spondingly.

Table 9 shows the main results of our regression anal-
ysis on the subset of the GAP development set with a
correct solution (cf. Section 5.1), organized by columns
(systems). Each row provides a regression coefficient
with its confidence level as well as the relative impor-
tance score for the predictor, using Dominance Analysis
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Lee et al. Clark and Manning Wiseman et al. Lee et al. Lee et al. Joshi et al.
(2013) (2015) (2016) (2017) (2018) (2020)

Gender
Coef −0.473∗∗∗ −0.308∗∗ −0.314∗∗ −0.271∗∗ −0.215∗ −0.084
DA 0.008 0.004 0.004 0.003 0.002 0.000

C_Freq
Coef 0.004 0.018∗∗∗ −0.004 −0.003 −0.001 0.001
DA 0.000 0.005 0.000 0.000 0.000 0.000

I_Freq
Coef −0.003 −0.003 −0.004 −0.006 −0.003 0.003
DA 0.000 0.000 0.000 0.001 0.000 0.000

C_Diff
Coef 1.291∗∗ −1.617∗∗∗ −0.933. −0.337 0.608 −0.065
DA 0.006 0.002 0.001 0.001 0.001 0.000

I_Diff
Coef −1.027∗ 1.444∗∗∗ −0.086 −0.740. −0.510 −0.053
DA 0.003 0.002 0.001 0.004 0.001 0.000

C_Single
Coef 0.344∗∗ 0.475∗∗∗ 0.775∗∗∗ 0.666∗∗∗ 0.554∗∗∗ 0.171
DA 0.004 0.008 0.021 0.016 0.010 0.001

I_Single
Coef −0.053 −0.166. −0.268∗∗ −0.346∗∗∗ −0.360∗∗∗ 0.036
DA 0.001 0.001 0.003 0.006 0.006 0.000

C_Same
Coef −0.603∗∗∗ −0.456∗∗∗ −0.561∗∗∗ −0.564∗∗∗ −0.336∗ −0.007
DA 0.015 0.002 0.007 0.008 0.004 0.000

I_Same
Coef 0.086 0.366∗∗ 0.120 0.318∗∗ 0.317∗∗ 0.028
DA 0.000 0.002 0.000 0.003 0.003 0.000

Model Fit
𝑅2

VZ 0.05 0.04 0.05 0.05 0.03 0.01
Acc 0.61 (0.58) 0.57 (0.55) 0.58 (0.53) 0.59 (0.53) 0.63 (0.63) 0.55 (0.55)

Table 9: Regression-based analysis of coreference resolution systems on GAP dataset.
DA: Dominance Analysis, Freq: Frequency, C_: Correct, I_: Incorrect instances.

(DA). 𝑅2
VZ indicates the goodness of fit values at the

level of complete systems. (Note that these numbers,
computed for logistic regression models, are not compa-
rable to the numbers for linear regression models from
Experiment 1.)

We also report accuracy values for the predictions
of our logistic regression model, averaged over 10-fold
cross-validation (𝐴𝑐𝑐). Numbers in parentheses indicate
the accuracy of corresponding majority baselines. The
differences in baseline scores across systems are due to
the fact that gold labels (i.e., the p(Correct) variable in
the equation) are dependent on system predictions.

System level analysis We first discuss results at the
system level. The last row of Table 9 (Model Fit) shows
the overall model fit for all systems. The ability of our
regression model to outperform majority baselines for
the first four systems (Lee et al., 2013; Clark and Man-
ning, 2015; Wiseman et al., 2016; Lee et al., 2017) shows
that our analysis can predict mistakes made by these
coreference resolvers by only considering a small set of
discourse-related features plus Gender. In contrast, Lee
et al. (2018) and Joshi et al. (2020) both show an 𝑅2

VZ
of almost zero, that is, the logistic regression models
perform at the level of a majority class baseline – the
remaining errors that they systems make are idiosyn-
cratic rather than systematic. These findings tie in well

with the overall system performance scores shown in
Table 8.

It is striking that Joshi et al. (2020), the best model
by a substantial margin, is also the one exhibiting the
smallest bias. We see two possible explanations: (a), the
model was trained on a large corpus from several do-
mains with different discourse style, which may make it
more robust to gender bias (Saunders and Byrne, 2020);
(b) in contrast to the older studies, this model is based
on contextualized embeddings, which also showed lower
bias in Experiment 1. Without re-training the model, we
cannot currently distinguish between these two expla-
nations.

Predictor level analysis We now move on to investi-
gate the contribution of each predictor to the systems’
predictability. At this level, gender is a statistically sig-
nificant predictor (p < 0.05) for all systems except Joshi
et al. (2020). It has a negative sign throughout, indicat-
ing worse performance for female entities. This is again
in line with the findings reported in Table 8. However,
our approach reveals other important patterns which
cannot be observed by using traditional analysis meth-
ods. First, Clark and Manning (2015) and Wiseman et al.
(2016) have the same DA coefficient for gender variable
but different 𝑅2

VZ values. We interpret this to mean that
the contribution of gender bias to the overall bias in
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these two systems is not the same, an observation that
would not have been possible through traditional bias
analysis methods (cf. Table 8).

Second, we see that the coefficient signs of the pre-
dictors C_Single and C_Same remain the same across
systems: Systems perform better for instances where the
correct antecedent is a single word, and it is not in the
same sentence with the pronoun. Moreover, dominance
analysis shows that these two predictors are among the
main contributors to the biased predictions in four sys-
tems out of six, the two exceptions being Lee et al. (2013)
and Joshi et al. (2020).

Third, the small but consistent positive relative im-
portance values of the C_Diff and I_Diff predictors for
half of the systems show that these variables help ex-
plain the systems’ predictions. In contrast, the low
relative importance values of the C_Frequency and
I_Frequency predictors indicate that these variables do
not affect coreference resolution much.

Interpretability These detailed findings indicate that,
similar to emotion intensity prediction, the analysis of
coreference resolvers can also benefit from not only the
controlled bias variable but also from other properties of
the input even in datasets which are designed carefully
to isolate the effect of the target variable. As stated
in Exp. 1, these analyses can also be used to extract
interesting examples and subsets.

We illustrate this for the two attributes C_Same
and I_Same, i.e., whether the correct and incorrect an-
tecedent are in the same sentence or not. We split the
GAP dataset into four reasonably-sized subsets based
on the values of these attributes: the subset where both
are in the same sentence (C_Same=1 and I_Same=1)
includes ∼ 900 examples and the other three subsets
include ∼ 300 examples. Table 10 shows the bias values
(defined as above) for the three best performing systems.
We observe that these systems vary widely regarding
the subset where gender bias is most prominently visible
varies across systems: Lee et al. (2017, 2018) both show
the worst bias when the incorrect antecedent is not in
the current sentence (I_Same=0), but differ in the effect
of the position of the correct antecedent (C_Same). In
contrast, Joshi et al. (2020) performs almost perfectly
when I_Same=0, but struggles most the case when both
correct and incorrect antecedent are in the current sen-
tence. These variations in model performance across
subsets raise questions about the representations of an-
tecedents in the various models which go beyond the
scope of this paper.

6 Conclusion
In this article, we have argued that bias analysis, a task of
major importance concerning the societal implications

I_Same=0 I_Same=1

Lee et al. (2017)
C_Same=0 0.80 1.10
C_Same=1 0.90 0.90

I_Same=0 I_Same=1

Lee et al. (2018)
C_Same=0 0.90 1.00
C_Same=1 0.86 0.97

I_Same=0 I_Same=1

Joshi et al. (2020)
C_Same=0 1.02 1.02
C_Same=1 0.99 0.94

Table 10: Bias values for the three best performing
systems, with data split into four groups according to
C_Same and I_Same (worst bias marked in boldface).

of NLP, can benefit from richer statistical methods to
detect, quantify and attribute bias. We have proposed
to follow other scientific fields in adopting regression
analysis which (a) generalizes to multiple bias variables,
(b) can quantify the contribution of confounder variables
to the observed bias with measures of effect size, and
(c) can be used to diagnose system behavior and extract
informative datapoints.

Clearly, regression analysis is no panacea on its own:
it presupposes a set of plausible covariates of bias, which
can come from a wide variety of sources, including task-
specific annotation, task-unspecific input representa-
tions, or model architecture (Hovy and Prabhumoye,
2021). Such covariates are typically known through do-
main expertise or uncovered by exploratory data analy-
sis. Furthermore, the values of these bias variables must
be available, or annotated, for all data points, which
can represent a bottleneck. Thus, regression analysis
complements, but does not replace, traditional methods
of bias analysis.

We have demonstrated the usefulness of our ap-
proach by analyzing a range of model architectures on
a regression task and a classification task, obtaining
model-level results that are in line with the existing
literature, e.g., BERT-based systems appear to exhibit
comparatively little bias (Basta et al., 2019). In addition,
adding predictor-level analysis offers a richer under-
standing of the importance of the bias variables and
their interactions with other textual properties. Note
that we only considered datasets specifically designed
to exhibit the effects of a single bias variable. We believe
that the benefits of our analysis framework would be
even clearer on more naturalistic datasets where pair-
wise hypothesis tests become even more problematic
(see, e.g., Gorrostieta et al. (2019)).

Another methodological debate that we hope to con-
tribute to is what constitutes a ’substantial’ bias? We
have argued that effect sizes offer a statistically sound
approach to measuring the amount of variation in the
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output that can be attributes to a set of input properties.
Our study provides a starting point for the community
to establish a magnitude for what it considers a ’sub-
stantial’ bias, similar to the often-used thresholds for
inter-annotator agreement (Cohen, 1968) or general ef-
fect sizes in psychology (Cohen, 1988).

Regarding future work, one avenue concerns richer
regression models that analyze interactions among pre-
dictors. Such interactions, when properly motivated,
can further improve our understanding of the perfor-
mance data. In fact, our last example in Exp. 2 essentially
demonstrates an interaction: the degree of gender bias
in the conference resolvers is affected by an interaction
between the position of the incorrect and the correct an-
tecedents. Ideally, such observations might serve as mo-
tivation for assessing and potentially modifying model
architectures or training regimens.

Another avenue of future research is widening our
scope from the analysis of bias in NLPmodels (that is, “in
vitro” bias according to our terminology in Section 1) to
real life “in vivo” bias in academic communities. Recent
studies have identified multiple such biases, e.g., gen-
der bias in publications (Mohammad, 2020) and hiring
(Eaton et al., 2020). We would hope that the application
of robust regression analysis, a standard method in the
social sciences, would help bolstering these studies and
contribute towards redressing such social harms.

References
Achen, Christopher H. 1982. Interpreting and using re-

gression, volume 29 of Quantitative Applications in the
Social Sciences. Sage.

Aono, Masaki and Shinnosuke Himeno. 2018. KDE-
AFFECT at SemEval-2018 Task 1: Estimation of affects
in tweet by using convolutional neural network for
n-gram. In Proceedings of SemEval, pages 156–161,
New Orleans, LA.

Azen, Razia and Nicole Traxel. 2009. Using dominance
analysis to determine predictor importance in logis-
tic regression. Journal of Educational and Behavioral
Statistics, 34:319 –347.

Baayen, Harald. 2008. Analyzing Linguistic Data. Cam-
bridge University Press.

Barr, Dale J, Roger Levy, Christoph Scheepers, and
Harry J Tily. 2013. Random effects structure for confir-
matory hypothesis testing: Keep it maximal. Journal
of memory and language, 68(3):255–278.

Basta, Christine, Marta R. Costa-jussà, and Noe Casas.
2019. Evaluating the underlying gender bias in con-
textualized word embeddings. In Proceedings of the
First Workshop on Gender Bias in Natural Language

Processing, pages 33–39, Florence, Italy. Association
for Computational Linguistics.

Bates, Douglas, Reinhold Kliegl, Shravan Vasishth, and
Harald Baayen. 2018. Parsimonious mixed mod-
els. ArXiv preprint, http://arxiv.org/abs/1506.
04967.

Beinborn, Lisa, Torsten Zesch, and Iryna Gurevych. 2014.
Predicting the difficulty of language proficiency tests.
Transactions of the Association for Computational Lin-
guistics, 2:517–530.

Bender, Emily M and Batya Friedman. 2018. Data state-
ments for natural language processing: Toward miti-
gating system bias and enabling better science. Trans-
actions of the Association for Computational Linguistics,
6:587–604.

Blodgett, Su Lin, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (technology) is
power: A critical survey of “bias” in NLP. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5454–5476, Online.
Association for Computational Linguistics.

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou,
Venkatesh Saligrama, and Adam Tauman Kalai. 2016.
Man is to computer programmer aswoman is to home-
maker? Debiasing word embeddings. In Proceedings
of NeurIPS, pages 4349–4357.

Bresnan, Joan, Anna Cueni, Tatiana Nikitina, and Harald
Baayen. 2007. Predicting the dative alternation. In
G. Bouma, I. Kraemer, and J. Zwarts, editors, Cogni-
tive Foundations of Interpretation, pages 69–94. Royal
Netherlands Academy of Science.

Budescu, David V. 1993. Dominance analysis: a new
approach to the problem of relative importance of
predictors in multiple regression. Psychological bul-
letin, 114(3):542.

Caliskan, Aylin, Joanna J Bryson, and Arvind Narayanan.
2017. Semantics derived automatically from lan-
guage corpora contain human-like biases. Science,
356(6334):183–186.

Caucheteux, Charlotte and Jean-Rémi King. 2022. Brains
and algorithms partially converge in natural language
processing. Communications Biology, 5(1):134.

Clark, Kevin and Christopher D. Manning. 2015. Entity-
centric coreference resolution with model stacking. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1405–1415, Beijing,
China. Association for Computational Linguistics.

Northern European Journal of Language Technology

http://arxiv.org/abs/1506.04967
http://arxiv.org/abs/1506.04967


Cohen, Jacob. 1968. Weighted kappa: Nominal scale
agreement with provision for scaled disagreement or
partial credit. Psychological Bulletin, 70:213–220.

Cohen, Jacob. 1988. Statistical power analysis for the
behavioral sciences, 2nd edition. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Davidson, Thomas, Debasmita Bhattacharya, and In-
gmar Weber. 2019. Racial bias in hate speech and
abusive language detection datasets. In Proceedings
of the Third Workshop on Abusive Language Online,
pages 25–35, Florence, Italy. Association for Compu-
tational Linguistics.

Dayanik, Erenay and Sebastian Padó. 2020. Masking
actor information leads to fairer political claims de-
tection. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4385–4391, Online. Association for Computational
Linguistics.

Dev, Sunipa, Tao Li, Jeff M. Phillips, and Vivek Srikumar.
2020. On measuring and mitigating biased inferences
of word embeddings. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages
7659–7666. AAAI Press.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational Lin-
guistics.

Díaz, Mark, Isaac Johnson, Amanda Lazar, Anne Marie
Piper, and Darren Gergle. 2018. Addressing age-
related bias in sentiment analysis. In Proceedings
of the 2018 CHI Conference on Human Factors in Com-
puting Systems, pages 1–14.

Doll, Richard, Richard Peto, Jillian Boreham, and Isabelle
Sutherland. 2004. Mortality in relation to smoking:
50 years’ observations on male british doctors. BMJ,
328(7455):1519.

Dormann, Carsten, Jane Elith, Sven Bacher, Carsten
Buchmann, Gudrun Carl, Gabriel Carré, T. Dieköt-
ter, Jaime García Márquez, Bernd Gruber, Bruno
Lafourcade, Pedro Leitão, TamaraMünkemüller, Colin
Mcclean, Patrick Osborne, Björn Reineking, Boris

Schröder, Andrew Skidmore, Damaris Zurell, and
Sven Lautenbach. 2013. Collinearity: A review of
methods to deal with it and a simulation study evalu-
ating their performance. Ecography, 36:27–46.

Eaton, Asia A., Jessica F. Saunders, Ryan K. Jacobson,
and Keon West. 2020. How gender and race stereo-
types impact the advancement of scholars in stem:
Professors’biased evaluations of physics and biology
post-doctoral candidates. Sex Roles, 82(3):127–141.

Elazar, Yanai and Yoav Goldberg. 2018. Adversarial re-
moval of demographic attributes from text data. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 11–21.

Feder, Amir, Nadav Oved, Uri Shalit, and Roi Reichart.
2021. CausaLM: Causal model explanation through
counterfactual language models. Computational Lin-
guistics, 47(2):333–386.

Friedman, Batya and Helen Nissenbaum. 1996. Bias in
computer systems. ACM Transactions on Information
Systems, 14(3):330–347.

Gao, Yang, Steffen Eger, Ilia Kuznetsov, Iryna Gurevych,
and Yusuke Miyao. 2019. Does my rebuttal matter?
insights from a major NLP conference. In Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pages 1274–1290, Minneapolis, Minnesota.
Association for Computational Linguistics.

Gardner, M. J. 1973. Using the environment to explain
and predict mortality. Journal of the Royal Statistical
Society. Series A (General), 136(3):421–440.

Garg, Nikhil, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences, 115(16):E3635–
E3644.

Gerz, Daniela, Ivan Vulić, Edoardo Maria Ponti, Roi Re-
ichart, and Anna Korhonen. 2018. On the relation
between linguistic typology and (limitations of) mul-
tilingual languagemodeling. In Proceedings of EMNLP,
pages 316–327, Brussels, Belgium.

Gonen, Hila and Yoav Goldberg. 2019. Lipstick on a pig:
Debiasing methods cover up systematic gender biases
in word embeddings but do not remove them. In Pro-
ceedings of the 2019 Workshop onWidening NLP, pages
60–63, Florence, Italy. Association for Computational
Linguistics.

Gorrostieta, Cristina, Reza Lotfian, Kye Taylor, Richard
Brutti, and John Kane. 2019. Gender de-biasing in

Northern European Journal of Language Technology



speech emotion recognition. In Proceedings of Inter-
speech, pages 2823–2827.

Grömping, Ulrike. 2006. Relative importance for linear
regression in R: the package relaimpo. Journal of
statistical software, 17(1):1–27.

Hajat, Anjum, Charlene Hsia, and Marie S O’Neill. 2015.
Socioeconomic disparities and air pollution exposure:
a global review. Current Environmental Health Reports,
2(4):440–450.

Hovy, Dirk and Shrimai Prabhumoye. 2021. Five sources
of bias in natural language processing. Language and
Linguistics Compass, 15(8):e12432.

Imdad Ullah, Muhammad, Muhammad Aslam, Saima
Altaf, and Munir Ahmed. 2019. Some new diagnostics
of multicollinearity in linear regression model. Sains
Malaysiana, 48(2):2051–2060.

Jaeger, T. Florian. 2008. Categorical data analysis: Away
from anovas (transformation or not) and towards
logit mixed models. Journal of Memory and Language,
59(4):434–446. Special Issue: Emerging Data Analysis.

Jin, Xisen, Francesco Barbieri, Brendan Kennedy, Aida
Mostafazadeh Davani, Leonardo Neves, and Xiang
Ren. 2021. On transferability of bias mitigation ef-
fects in language model fine-tuning. In Proceedings
of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3770–3783, Online.
Association for Computational Linguistics.

Joshi, Mandar, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: Im-
proving pre-training by representing and predicting
spans. Transactions of the Association for Computa-
tional Linguistics, 8:64–77.

Kaneko, Masahiro and Danushka Bollegala. 2019.
Gender-preserving debiasing for pre-trained word em-
beddings. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages
1641–1650, Florence, Italy. Association for Computa-
tional Linguistics.

Kaneko, Masahiro and Danushka Bollegala. 2021a. De-
biasing pre-trained contextualised embeddings. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguis-
tics: Main Volume, pages 1256–1266, Online. Associa-
tion for Computational Linguistics.

Kaneko, Masahiro and Danushka Bollegala. 2021b.
Dictionary-based debiasing of pre-trained word em-
beddings. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational

Linguistics: Main Volume, pages 212–223, Online. As-
sociation for Computational Linguistics.

Kiritchenko, Svetlana and Saif Mohammad. 2018. Exam-
ining gender and race bias in two hundred sentiment
analysis systems. In Proceedings of STARSEM, pages
43–53, New Orleans, LA.

Kumar, Sachin, ShulyWintner, Noah A. Smith, and Yulia
Tsvetkov. 2019. Topics to avoid: Demoting latent con-
founds in text classification. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages
4153–4163, Hong Kong, China. Association for Com-
putational Linguistics.

Këpuska, V. and G. Bohouta. 2018. Next-generation of
virtual personal assistants (Microsoft Cortana, Apple
Siri, Amazon Alexa and Google Home). In 2018 IEEE
8th Annual Computing and Communication Workshop
and Conference (CCWC), pages 99–103.

Lauscher, Anne and Goran Glavaš. 2019. Are we con-
sistently biased? multidimensional analysis of biases
in distributional word vectors. In Proceedings of the
Eighth Joint Conference on Lexical and Computational
Semantics (*SEM 2019), pages 85–91, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Lee, Heeyoung, Angel Chang, Yves Peirsman, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2013.
Deterministic coreference resolution based on entity-
centric, precision-ranked rules. Computational Lin-
guistics, 39(4):885–916.

Lee, Kenton, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 188–
197, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Lee, Kenton, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 687–692, New Orleans,
Louisiana. Association for Computational Linguistics.

Li, Shoushan, Rui Xia, Chengqing Zong, and Chu-Ren
Huang. 2009. A framework of feature selection meth-
ods for text categorization. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 692–700, Suntec,
Singapore. Association for Computational Linguistics.

Northern European Journal of Language Technology



Lindeman, Richard H., Peter F. Merenda, and Ruth Z.
Gold. 1980. Introduction to Bivariate and Multivariate
Analysis. Scott Foresman, Glenview, IL, USA.

May, Chandler, Alex Wang, Shikha Bordia, Samuel R.
Bowman, and Rachel Rudinger. 2019. On measuring
social biases in sentence encoders. In Proceedings of
the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short
Papers), pages 622–628, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

McNamee, Roseanne. 2005. Regression modelling and
other methods to control confounding. Occupational
and Environmental Medicine, 62(7):500–506.

Mehrabi, Ninareh, Thamme Gowda, Fred Morstatter,
Nanyun Peng, and Aram Galstyan. 2019. Man is to
person as woman is to location: Measuring gender
bias in named entity recognition. In Proceedings of the
31st ACM conference on Hypertext and Social Media,
pages 231–232.

Mehrabi, Ninareh, Fred Morstatter, Nripsuta Saxena,
Kristina Lerman, and Aram Galstyan. 2021. A sur-
vey on bias and fairness in machine learning. ACM
Computing Surveys, 54(6).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the 1st In-
ternational Conference on Learning Representations
(Workshop Track).

Mohammad, Saif, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. Semeval-
2018 task 1: Affect in tweets. In Proceedings of SE-
MEVAL, pages 1–17, New Orleans, LA.

Mohammad, Saif M. 2020. Gender gap in natural lan-
guage processing research: Disparities in authorship
and citations. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7860–7870, Online. Association for Computa-
tional Linguistics.

Mohammad, Saif M. and Felipe Bravo-Marquez. 2017.
Emotion intensities in tweets. In Proceedings of the
sixth joint conference on lexical and computational se-
mantics (*Sem), Vancouver, Canada.

Padrão, Patrícia, Nuno Lunet, Ana Cristina Santos, and
Henrique Barros. 2007. Smoking, alcohol, and dietary
choices: evidence from the Portuguese national health
survey. BMC Public Health, 7(1):1–9.

Papay, Sean, Roman Klinger, and Sebastian Padó. 2020.
Dissecting span identification tasks with performance

prediction. In Proceedings of EMNLP, page 4881–4895,
Online.

Park, Ji Ho, Jamin Shin, and Pascale Fung. 2018. Re-
ducing gender bias in abusive language detection. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2799–2804,
Brussels, Belgium. Association for Computational Lin-
guistics.

Pearl, Judea. 2009. Causal inference in statistics: An
overview. Statistics Surveys, 3:96–146.

Poliak, Adam, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018. Hy-
pothesis only baselines in natural language inference.
In Proceedings of the Seventh Joint Conference on Lexi-
cal and Computational Semantics, pages 180–191.

Pradhan, Sameer, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-2012
shared task: Modeling multilingual unrestricted coref-
erence in OntoNotes. In Joint Conference on EMNLP
and CoNLL - Shared Task, pages 1–40, Jeju Island, Ko-
rea. Association for Computational Linguistics.

Qian, Yusu, Urwa Muaz, Ben Zhang, and Jae Won Hyun.
2019. Reducing gender bias in word-level language
models with a gender-equalizing loss function. In
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research
Workshop, pages 223–228, Florence, Italy. Association
for Computational Linguistics.

Roller, Stephen and Katrin Erk. 2016. PIC a different
word: A simple model for lexical substitution in con-
text. In Proceedings of NAACL/HLT, pages 1121–1126,
San Diego, California.

Rubin, Donald B. 1973. Matching to remove bias in
observational studies. Biometrics, pages 159–183.

Rudinger, Rachel, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in coref-
erence resolution. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pages 8–14, New Orleans, LA.

Salmerón, R., C. B. García, and J. García. 2018. Variance
inflation factor and condition number in multiple lin-
ear regression. Journal of Statistical Computation and
Simulation, 88(12):2365–2384.

Sap, Maarten, Dallas Card, Saadia Gabriel, Yejin Choi,
and Noah A. Smith. 2019. The risk of racial bias in hate
speech detection. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1668–1678, Florence, Italy. Association for
Computational Linguistics.

Northern European Journal of Language Technology



Saunders, Danielle and Bill Byrne. 2020. Reducing gen-
der bias in neural machine translation as a domain
adaptation problem. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguis-
tics, pages 7724–7736, Online. Association for Compu-
tational Linguistics.

Schmid, Hans-Jörg. 2002. Do women and men really
live in different cultures? Evidence from the BNC. In
Corpus linguistics by the Lune: a Festschrift for Geoffrey
Leech, pages 185–221. Peter Lang, Frankfurt.

Schuster, Mike and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5149–5152. IEEE.

Schwemmer, Carsten and Sebastian Jungkunz. 2019.
Whose ideas are worth spreading? the representation
of women and ethnic groups in ted talks. Political
Research Exchange, 1(1):1–23.

Singh, Amit, Catherine Rose, Karthik Visweswariah, Vi-
jil Chenthamarakshan, and Nandakishore Kambhatla.
2010. Prospect: A system for screening candidates
for recruitment. In Proceedings of the 19th ACM In-
ternational Conference on Information and Knowledge
Management, page 659–668, New York, NY, USA. As-
sociation for Computing Machinery.

Smith, Thomas J. and C. M. Mckenna. 2013. A compari-
son of logistic regression Pseudo R2 indices. General
Linear Model Journal, 39(2):17–26.

Snijders, Tom and Roel Bosker. 2012. Multilevel Analy-
sis: An Introduction to Basic and Advanced Multilevel
Modeling, 2nd edition. Sage Publishers, London.

Stanovsky, Gabriel, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine trans-
lation. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 1679–
1684, Florence, Italy. Association for Computational
Linguistics.

Stuart, Elizabeth A. 2010. Matching methods for causal
inference: A review and a look forward. Statistical sci-
ence: a review journal of the Institute of Mathematical
Statistics, 25(1):1.

Sullivan, Gail M. and R. Feinn. 2012. Using effect size –
or why the 𝑝 value is not enough. Journal of graduate
medical education, 4(3):279–82.

Sun, Dongming, Xiaolu Zhang, Kim-Kwang Raymond
Choo, Liang Hu, and Feng Wang. 2021. Nlp-based
digital forensic investigation platform for online com-
munications. Computers & Security, 104:102210.

Sun, Tony, Andrew Gaut, Shirlyn Tang, Yuxin Huang,
Mai ElSherief, Jieyu Zhao, Diba Mirza, Elizabeth Beld-
ing, Kai-Wei Chang, and William Yang Wang. 2019.
Mitigating gender bias in natural language processing:
Literature review. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1630–1640, Florence, Italy. Association for
Computational Linguistics.

Swinger, Nathaniel, Maria De-Arteaga, Neil Thomas
Heffernan IV, Mark DM Leiserson, and Adam Tau-
man Kalai. 2019. What are the biases in my word
embedding? In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, pages 305–311.

Tjønneland, Anne, Morten Grønbæk, Connie Stripp, and
Kim Overvad. 1999. Wine intake and diet in a ran-
dom sample of 48763 Danish men and women. The
American journal of clinical nutrition, 69(1):49–54.

Wang, Min and Xiaobing Zhou. 2018. Yuan at SemEval-
2018 Task 1: Tweets emotion intensity prediction us-
ing ensemble recurrent neural network. In Proceedings
of SEMEVAL, pages 205–209, New Orleans, LA.

Webster, Kellie, Marta Recasens, Vera Axelrod, and Jason
Baldridge. 2018. Mind the GAP: A balanced corpus of
gendered ambiguous pronouns. Transactions of the
Association for Computational Linguistics, 6:605–617.

Wiseman, Sam, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coreference
resolution. In Proceedings of the 2016 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 994–1004, San Diego, California. Association
for Computational Linguistics.

Wu, Chuhan, Fangzhao Wu, Junxin Liu, Zhigang Yuan,
Sixing Wu, and Yongfeng Huang. 2018. THU_NGN at
SemEval-2018 Task 1: Fine-grained tweet sentiment
intensity analysis with attention CNN-LSTM. In Pro-
ceedings of SEMEVAL, pages 186–192, New Orleans,
Louisiana.

Wu, Yonghui, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing
Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George
Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
https://arxiv.org/abs/1609.08144.

Northern European Journal of Language Technology

https://arxiv.org/abs/1609.08144


Zhang, Brian Hu, Blake Lemoine, andMargaretMitchell.
2018. Mitigating unwanted biases with adversarial
learning. In Proceedings of the 2018 AAAI/ACM Con-
ference on AI, Ethics, and Society, pages 335–340.

Zhao, Jieyu, Subhabrata Mukherjee, Saghar Hosseini,
Kai-Wei Chang, and Ahmed Hassan Awadallah. 2020.
Gender bias in multilingual embeddings and cross-
lingual transfer. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguis-
tics, pages 2896–2907, Online. Association for Compu-
tational Linguistics.

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Ryan Cotterell,
Vicente Ordonez, and Kai-Wei Chang. 2019. Gen-
der bias in contextualized word embeddings. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 629–634,
Minneapolis, Minnesota.

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification using
corpus-level constraints. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language
Processing, pages 2979–2989, Copenhagen, Denmark.
Association for Computational Linguistics.

Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in coref-
erence resolution: Evaluation and debiasing methods.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 15–
20, New Orleans, LA.

Zhu, Yukun, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015a. Aligning books and movies: Towards
story-like visual explanations by watchingmovies and
reading books. In Proceedings of the IEEE international
conference on computer vision, pages 19–27.

Zhu, Zhiwei, Zhi Li, David Wylde, Michael Failor, and
George Hrischenko. 2015b. Logistic regression for
insured mortality experience studies. North American
Actuarial Journal, 19(4):241–255.

Northern European Journal of Language Technology


	Introduction
	Related Work
	Bias Identification With Regression Models: A Workflow
	Step 1: Choice of Regression Model
	Step 2: Selection of Predictors
	Step 3: Model Validation
	Step 4: Computing Model Fit and Effect Sizes

	Experiment 1: Emotion Intensity Prediction
	Dataset and Previous Analysis
	Systems
	Setup of the Regression Model
	Results

	Experiment 2: Coreference Resolution
	Dataset and Previous Analysis
	Systems
	Setup of the Regression Model
	Results

	Conclusion

