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Abstract

Deep neural networks have advanced the state of the art in numerous fields, but
they generally suffer from low computational efficiency and the level of improvement
compared to more efficient machine learning models is not always significant. We
perform a thorough PoS tagging evaluation on the Universal Dependencies tree-
banks, pitting a state-of-the-art neural network approach against UDPipe and our
sparse structured perceptron-based tagger, efselab. In terms of computational ef-
ficiency, efselab is three orders of magnitude faster than the neural network model,
while being more accurate than either of the other systems on 47 of 65 treebanks.

1 Introduction
There is an ongoing revolution in machine learning, brought on by recent advances in
deep neural networks. This has led to breakthroughs in a variety of fields, from image
recognition (He et al., 2016) and generation (Goodfellow et al., 2014), through games
like the strategic board game Go (Silver et al., 2016) and the first-person shooter Doom
(Lample and Chaplot, 2017), to long-standing tasks in natural language processing such
as machine translation (Bahdanau et al., 2014; Wu et al., 2016) and parsing (Chen and
Manning, 2014).

Neural networks have been applied to nearly every area of natural language process-
ing, as a quick glance at the proceedings of any recent conference in the field will reveal.
The level of success varies, however. For sequence processing tasks with long-range depen-
dencies, recurrent neural network models have lead to impressive improvements. Other
areas, including sequence labeling tasks with local dependencies, such as part-of-speech
(PoS) tagging and Named Entity Recognition (NER), have not seen the overwhelming
improvements observed in other fields. Since neural network methods typically suffer
from low computational efficiency, the central question asked in this work is this: are
neural networks methods worth the cost for sequence labeling tasks with mainly local de-
pendencies?

To investigate this, we compare bilty, a state-of-the-art system based on recurrent
neural networks (Plank et al., 2016) to two systems based on the structured perceptron
(Collins, 2002): the popular implementation in UDPipe/MorphoDiTa (Straka et al.,
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2016; Straková et al., 2014) and our efselab system. The primary goal of efselab is
computational efficiency, and in this sense it represents the opposite accuracy/efficiency
tradeoff compared to bilty.

The core of efselab is a compiler from feature templates to a corresponding sequence
labeling computer program, using the automatic feature hash refactoring procedure de-
scribed in Section 2.3 to improve computational efficiency. The source code is available
as Free Software, along with the necessary scripts to reproduce the experiments in this
article.1 Besides the generic model used for the evaluations presented here, there is also
a Swedish annotation pipeline with additional resources, which combines efselab and
MaltParser (Nivre et al., 2007), and is able to process raw Swedish text into a full
Universal Dependencies (version 2) analysis.2 In this pipeline, efselab is performing
both of the sequence labeling tasks (PoS tagging and Named Entity Recognition).

2 Efficient Sequence Labeling: Methods
Sequence labeling is the task of finding a sequence of labels yi given a corresponding
sequence of inputs xi. This has been used in natural language processing for a wide range
of tasks, including PoS tagging, Named Entity Recognition and shallow parsing. This
section describes our implementation of an efficient sequence labeling system, efselab.
As mentioned above, its primary goal is computational efficiency, which is reflected by
our choice of using:

• Sparse features from a manually specified template.

• A simple linear classifier (structured perceptron).

• Feature hashing with automatic refactoring.

• Feature extraction compiled to native code.

Several of these decisions can be modified in order to gain accuracy at the cost of more
computation, but in these cases we have generally decided in favor of computational
efficiency.

2.1 Sparse Features with the Structured Perceptron

Feature-rich models for sequence labeling have been popular for the last couple of decades.
They are based on defining a vector-valued feature function ~φ(x, y, i), which computes a
sparse vector representation of the sequence x and label sequence y at sequence position
i. For instance, we might have the kth element of such a function defined as:

φk(x, y, i) =

{
1 if xi = cat ∧ yi−1 = det ∧ yi = noun
0 otherwise

}
1https://github.com/robertostling/efselab
2The Swedish annotation pipeline is joint work with Aaron Smith, Jesper Näsman, Joakim Nivre,

Filip Salomonsson and Emil Stenström.
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For convenience, we write the sum of a feature function over a sequence as

~φ(x, y) =
∑
i

~φ(x, y, i)

The task of the classifier is to find a weight vector ~w such that ~φ(x, y)T · ~w is high when
y is a correct labeling of x, and low otherwise.

Collins (2002) demonstrated that the perceptron algorithm (Rosenblatt, 1957) can
yield excellent results for sequence labeling tasks, by applying a search algorithm to whole
sequences. Later work further demonstrated the strength of this method, for instance by
refining the search method (Shen et al., 2007) or the weight updating scheme (Daumé
and Marcu, 2005).

Algorithm 1 Structured Perceptron Training.
. Start at time t = 0 with a zero weight vector
~w(0) ← ~0
t← 0
repeat

. Repeatedly iterate over the training data D
for all x, y ∈ D do

t← t+ 1
. Estimate the labels ŷ using old weights
ŷ ← argmaxy′ ~φ(x, y

′) · ~w(t)

. Update the weights
~w(t+1) ← ~w(t) + ~φ(x, y)− ~φ(x, ŷ)

end for
until convergence
. Return the mean weight vector over time
return 1

t

∑t
i=0 ~w

(i)

Algorithm 1 describes the structured perceptron learning algorithm. The argmax
operation can be performed by any search algorithm, either exactly with e.g. Viterbi
algorithm (Viterbi, 1967), or using an approximate method such as beam search. We use
beam search, since it offers an easy tradeoff between speed and accuracy by varying the
beam size. An important point here is that the mean weight vector during training is
used, which serves as a way of reducing bias towards recent observations and empirically
leads to higher classification accuracy (Collins, 2002).

2.2 Feature Hashing

The value of the feature function ~φ(x, y) typically has a high dimensionality but is very
sparse, with only some dozen out of millions of dimensions being non-zero. This makes
it computationally much more efficient to store only the few non-zero elements. Further-
more, given some hash function h(·) which maps features to indexes in a weight vector
~u, we have

~φ(x, y)T · ~w ≈
∑

k|φk(x,y)6=0

uh(k)
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if all φk are binary-valued. The computational advantage is that this amounts to adding
a small number of elements from known locations in the weight vector u. Note that u
is indexed by the (arbitrary) range of the h(·) function, unlike w which is of the same
dimensionality as ~φ(x, y).

For a function h(·) which is collision-free over the feature set, the equivalence is
exact. In practice we want u to be as small as possible to save computational resources.
Decreasing the size of u makes collisions more common and the approximation error
grows, but the method is often robust despite fairly high collision rates (Ganchev and
Dredze, 2008).

The size of u can be empirically determined by evaluating model performance on
held-out data, until a suitable balance between computational efficiency and learning
ability is found. However, re-training the model every time is costly, and we have found
that a simpler method works equally well. First, a conservative (high) value for the
dimensionality of u is chosen and the model is trained. Then, we update u ← u1...N/2 +
uN/2+1...N and use h(·) mod N/2 as the new hashing function. In other words, we break
the vector u in two halves and add them, then wrap the hash function to cover the new
u.

For word types that occur in the training data, we restrict the allowed tags to those
occurring with the (lowercased) type in the training data. To avoid string comparisons
and increase computational efficiency, we consider all strings with the same hash sum
equivalent. This means that there will likely be a small number of mistaggings due to the
tag lexicon, but in practice this is not a significant problem if the table size is sufficiently
large. Additionally, errors tend to affect infrequent types due to Zipf’s law, and therefore
affect relatively few tokens.

2.3 Refactoring Feature Templates

A naive way to define h(·) would be to construct a string of characters representing the
corresponding feature function φk(x, y, i), for instance “suffix=ed,tag=VERB”, and then
use any function for string hashing to map this into an integer. In most cases the feature
functions φk are created from templates that generate a number of very similar functions.
For instance, with xi = hinted and yi−1 = noun, yi = verb we might have non-zero
feature functions with conditions such as these:

suffix1 = d ∧ tag = verb
suffix2 = ed ∧ tag = verb
suffix3 = ted ∧ tag = verb
form = hinted ∧ tag = verb
suffix1 = d ∧ tag = verb ∧ last-tag = noun
suffix2 = ed ∧ tag = verb ∧ last-tag = noun
suffix3 = ted ∧ tag = verb ∧ last-tag = noun
form = hinted ∧ tag = verb ∧ last-tag = noun
. . .

A typical hash function over sequences (or trees) of integers works by recursively applying
a mixing function m(a, b) that maps integers a and b to another integer in a pseudo-
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Table 1: Refactored feature hash computation.

Hash value Feature condition

t1 = d
t2 = m(e, t1)
t3 = m(t, t2)
t4 = m(n, t3)
t5 = m(i, t4)
t6 = m(h, t5)
t7 = m(suffix1, t1) suffix1 = d
t8 = m(suffix2, t2) suffix2 = ed
t9 = m(suffix3, t3) suffix3 = ted
t10 = m(form, t5) form = hinted
t11 = m(tag,verb) tag = verb

t12 = m(last-tag,noun) last-tag = noun

t13 = m(t11, t12) tag = verb ∧ last-tag = noun

t14 = m(t7, t11) suffix1 = d ∧tag = verb

t15 = m(t8, t11) suffix2 = ed ∧tag = verb

t16 = m(t9, t11) suffix3 = ted ∧tag = verb

t17 = m(t10, t11) form = hinted ∧tag = verb

t18 = m(t7, t13) suffix1 = d ∧tag = verb ∧ last-tag = noun

t19 = m(t8, t13) suffix2 = ed ∧tag = verb ∧ last-tag = noun

t20 = m(t9, t13) suffix3 = ted ∧tag = verb ∧ last-tag = noun

t21 = m(t10, t13) form = hinted ∧tag = verb ∧ last-tag = noun

random manner.3 For the second of the examples above, we might therefore compute
m(suffix2,m(e,m(d,m(tag,verb)))), assuming that suffix2, e, d, tag and verb are all
discrete symbols that can be represented by integers.

Given the redundancy among these feature functions, it is possible to reduce com-
putation (applications of the mixing function) significantly by sharing subtrees between
feature hashes. Naively computing the hashes of the features above would require 48
evaluations of the mixing function m(·), but by refactoring the computation graph and
sharing intermediate values, it can be computed (as t14 through t21) using 20 evaluations
as shown in Table 1.

Beyond this refactoring, note that only t11 and later depend on the label y, which
means that during search the values of t1 through t10 are constant and do not need to be
recomputed. In addition, only t18 through t21 depend on previous tag assignments (ti−1
or earlier). During beam search, scoring the first hypothesis requires evaluating m(·) 20
times to compute t2 through t21, but subsequent hypotheses need only to recompute six
values: t12, t13 and t18 through t21. Assuming a beam size of four, these optimizations

3The choice of m is arbitrary, but we adapt it from MurmurHash: https://github.com/aappleby/
smhasher
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together reduce the number of operations from 4 · 48 = 192 when using the naive way, to
20 + 3 · 6 = 38 per token.

The efselab system takes as input a set of feature templates and a tagset definition,
automatically performs the refactoring described above, and produces code in the C
programming language for a sequence labeling tool. This can then be compiled to efficient
native code using a standard C compiler.

3 Experimental Setup
The task we evaluate in this work is PoS tagging with version 2 of the Universal Depen-
dencies tagset. This allows us to compare tagging accuracy over many languages with
an identical tagset, to maximize comparability across languages. The tagset consists
of 17 PoS categories, listed in Table 2. These are intended to represent coarse, cross-
linguistically common categories, and their specific delineation is (or should be) decided
for each language. Universal Dependencies may have further language-specific categories
as well as morphological features, which we do not use.

For this work, we limit ourselves to PoS tagging, even through efselab can of course
be applied to other sequence labeling tasks (our Swedish annotation pipeline also uses
it for NER). This is because of data availability, with the Universal Dependency tree-
banks being a unique resource in terms of uniformly annotated text in a large number of
languages.

3.1 Data

We use the Universal Dependencies treebanks, version 2.0 (Nivre et al., 2017). This
consists of 70 treebanks in 50 languages. Of these we use 65 in 48 languages for our
evaluations. Two are excluded (Kazakh and Uyghur) because no training data is available,
only small development and test sets. The Italian ParTUT treebank lacks a test set,
the Arabic NYUAD treebank requires access to non-free data, and finally the Russian
SynTagRus treebank was excluded because the UDPipe tool (Straka et al., 2016) was
unable to process it during training. Since Arabic, Italian and Russian are represented by
other Universal Dependencies treebanks, we are able to include them in our experiments.

Note that we use the standard training, development and test data split of the tree-
banks, with the test data that was released after the CoNLL 2017 shared task.4

3.2 Our System

While we have developed a Swedish annotation pipeline based on efselab that is specif-
ically tuned to Swedish (see Section 1), we use exactly the same settings and hyperpa-
rameters for all treebanks. The feature templates, described in Section 3.2.1, contain
very generic features based on tag and word n-grams as well as affixes. A beam size
of 4 is used during training and evaluation, as a compromise between tagging accuracy
and computational efficiency. We use development set tagging accuracy as a criterion for

4The training and development data is available at http://hdl.handle.net/11234/1-1983 while
the test data is available at http://hdl.handle.net/11234/1-2184.
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Table 2: The Universal PoS tagset.

Open word classes

adj Adjective
adv Adverb
intj Interjection
noun Noun
propn Proper noun
verb Verb

Closed word classes

adp Adposition
aux Auxiliary
cconj Coordinating conjunction
det Determiner
num Numeral
part Particle
pron Pronoun
sconj Subordinating conjunction

Other

punct Punctuation
sym Symbol
x Other
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Table 3: Feature templates for efselab used in our evalutaion.

ti−1, ti tag bigram
ti−2, ti−1, ti tag trigram
ti, chartype(wi) tag and character types of current word
ti, unique-chartype(wi) tag and unique character types of current word
ti, l(wi) tag and current word (lowercased)
ti, l(wi−1) tag and previous word (lowercased)
ti, l(wi+1) tag and next word (lowercased)
ti, l(wi−1), l(wi) tag and previous word bigram (lowercased)
ti, l(wi), l(wi+1) tag and word bigram (lowercased)
ti, prefixn(l(wi)) for n ∈ 1 . . . 5 tag and (lowercased) prefix of length 1, 2, 3, 4, 5
ti, suffixn(l(wi)) for n ∈ 1 . . . 5 tag and (lowercased) suffix of length 1, 2, 3, 4, 5

stopping training, and for the model compression technique described in Section 2.2 we
allow at most a 1% increase in development set error rate compared to the uncompressed
model.

To improve both efficiency and accuracy, we use a tag lexicon for word types that
occur in the training data. Out-of-vocabulary words are assumed to be either adjectives,
adverbs, interjections, (proper) nouns, verbs, symbols or belong to the miscellaneous
category.

3.2.1 Feature Templates

The feature templates used in our evaluation are listed in Table 3. There are altogether
19 templates, which is also the number of non-zero elements in the feature vector. The
types of features used are standard, essentially following Ratnaparkhi (1996). In order
to better predict out-of-vocabulary items, we also use the functions chartype and unique-
chartype. These normalize a token so that only the type of each character is preserved,
e.g. upper-case Latin character, lower-case Greek character, symbol, numeral, and so
on. The unique-chartype function furthermore reduces any sequence of one or more such
character type to a single item, in order to also abstract away from token length.

One argument commonly heard in favor of neural network models is that they elimi-
nate the need of manual feature engineering. This is true, but we note that engineering
the features in Table 3 required very little effort, and very similar feature templates have
been well-established for decades.

3.3 Baselines

To ensure a strong baseline, we use the bilty tagger5 of Plank et al. (2016), which
has claimed state-of-the-art results on PoS tagging for the Universal Dependencies tree-
banks. They use bidirectional Long Short-Term Memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997) on two levels: first on the character level to encode characters
into word representations, then on the word level to encode the sequence of word represen-
tations into PoS tag predictions. We trained models on the universal PoS tags from the

5We used the version in commit b0cd84a (published 2017-05-22) in our evaluation.
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Table 4: Timing results.
bilty our

Kilotokens per second per CPU core 0.66 503
Microseconds per token per CPU core 1509 2.0

Universal Dependencies treebanks, the same data used for efselab. Following the rec-
ommendations of the authors, we use 64-dimensional word embeddings, 100-dimensional
character embeddings, a 3-layer stacked bidirectional LSTM with 100 dimensions per
layer, and 20 epochs of plain stochastic gradient descent for optimization. Both bilty and
efselab are able to incorporate unsupervised learning from unannotated text, through
pretrained embeddings and word clusters, respectively. Since this data is only available
for a subset of the languages we decided to not use any data beyond the Universal De-
pendencies treebanks, but it should be noted that the performance of both systems can
be somewhat improved by adding such data, if available.

For additional comparison with a popular tool on the same dataset, we also include
UDPipe (Straka et al., 2016) in the comparison. Its PoS tagger module uses the model
of Straková et al. (2014), which is also based on a structured perceptron. We used the
most recent version of UDPipe6, and trained on the full training set of the Universal
Dependencies treebanks version 2.0, using hyperparameters from the CoNLL 2017 shared
task baseline supplementary data package.7

4 Results

4.1 Computational Efficiency

In order to evaluate the computational efficiency of bilty and efselab, we let both sys-
tems tag the Czech8 development set. Since UDPipe by default also performs numerous
additional tasks, such as morphological analysis and lemmatization, we do not include it
in this comparison. While the choice of data is not critical, we chose the Universal Depen-
dencies development set because it contains in-domain data with a realistic proportion
of out-of-vocabulary items. In order to obtain reliable timing statistics, we concatenated
multiple copies of the development set. All experiments were run on a single core of an
Intel Xeon E5645 CPU clocked at 2.4 GHz. The result can be found in Table 4, which
shows that efselab is nearly three orders of magnitude faster.

Dense-feature neural networks (like bilty) are notably easy to parallelize, so the
comparison in Table 4 on a single CPU core favors sparse feature models (like efselab).
A well-optimized implementation of an LSTM tagger model similar to Plank et al. (2016)

6Commit 54b3027 (published 2017-05-18), available at https://github.com/ufal/udpipe.
7Available at http://hdl.handle.net/11234/1-1990. Note that this release also contains pre-

trained UDPipe models, but since those are only trained on a subset of the training data (due to
restrictions of the CoNLL 2017 shared task), we train our own models but use the same hyperparameters
that were used for the shared task baselines.

8We use Czech because its development set is the largest among the Universal Dependencies treebanks.
It contains 159,284 tokens, and ten concatenated versions (1,592,840 tokens) are used for timing bilty
while 100 copies (15,928,400 tokens) are required for efselab.
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running on a modern GPU could be expected to approach 1012 operations per second
(Appleyard et al., 2016, Figure 1), roughly two orders of magnitude faster than the CPU
core used in our experiments, although with considerably higher power consumption.
While bilty is not explicitly optimized for speed, it relies on the DyNet library (Neubig
et al., 2017), which in our configuration uses the highly optimized Intel Math Kernel
Library (MKL) for matrix operations. Thus we expect that the performance of bilty
in our experiments is close to the maximum achievable for their model on the given
hardware. Since sentences are processed independently, all of the models discussed are
trivial to parallelize over multiple CPU cores, which on a modern multi-core CPU means
that the actual tagging speed is at least an order of magnitude above what is indicated
by Table 4 for a single core.

4.2 Tagging Accuracy

In the beginning of this study, we set out to find out how high the price for increased
computational efficiency is. Contrary to our expectations, it turns out that not only is
there no such price, but that efselab is actually the most accurate tagger for the vast
majority of the treebanks: 48 out of 65, including one tie (for Arabic).

The full results are presented in Table 5. Note that these are not directly comparable
to the evaluation of bilty on version 1.2 of the Universal Dependencies treebanks (Plank
et al., 2016, Table 2, column ~w+~c), since the treebanks have been extended and the tagset
itself has been somewhat modified since then. Still, our evaluation largely agrees with
theirs.

As pointed out by Plank et al. (2016), the accuracy of their and other neural network-
based models degrades relatively quickly with reduced training data size. To see how
much this affects our results, Figure 1 shows the relationship between training data size
and tagging accuracy for both bilty and efselab. As the regression lines indicate, our
method is indeed less sensitive to the size of training data: accuracy is proportional to
n−0.33 for data size n, compared to n−0.44 for bilty. For small corpora, below about
50,000 tokens, the neural network model of bilty indeed performs poorly in all cases.
For the largest corpora the performance of bilty is stronger, frequently outperforming
efselab’s perceptron model—but this is by no means absolute, and efselab has the
lowest error rate for the largest (Czech) corpus.

5 Discussion
Given the results above, we should ask ourselves why one method is better than another
for tagging a particular language. Given that the dataset represents a relatively diverse
set of languages, the first explanation to consider is that some models are more suited
for certain types of languages. However, when we look at the results on very similar
datasets, this explanation is not supported. For instance, in some cases (Ancient Greek
and Latin) different systems are better at different treebanks in the same language, and
the same holds for closely related languages (Norwegian, Danish and Swedish; Catalan,
Portuguese and Spanish).

In the previous section we showed that training data size has a stronger effect on the
accuracy of the neural network tagger, which is expected since this model does not have
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Table 5: Error rate (in percent) for universal part-of-speech tags on the official test sets
from the Universal Dependency treebanks version 2.0.
Language bilty UDPipe our Language bilty UDPipe our

Anc. Greek 10.4 17.1 12.3 Indonesian 7.0 6.6 7.1
Anc. Greek (PROIEL) 4.0 4.2 3.5 Irish 29.3 18.5 15.1
Arabic 5.2 5.7 5.2 Italian 2.5 2.7 2.3
Basque 6.7 7.6 5.8 Japanese 3.1 3.3 3.8
Belarusian 32.4 15.4 9.8 Korean 5.3 5.8 6.0
Bulgarian 1.9 2.3 2.0 Latin 21.3 20.3 15.6
Catalan 1.9 1.9 2.4 Latin (ITTB) 2.2 2.7 2.7
Chinese 7.4 7.9 9.0 Latin (PROIEL) 5.2 4.6 4.2
Coptic 5.5 5.7 4.9 Latvian 9.9 10.8 8.9
Croatian 4.1 4.0 3.6 Lithuanian 43.2 28.3 20.9
Czech 1.6 1.9 1.4 Norwegian (Bokmål) 2.7 3.0 2.9
Czech (CAC) 1.3 1.9 1.2 Norwegian (Nynorsk) 2.8 3.4 3.3
Czech (CLTT) 4.0 3.6 2.5 Old Church Slavonic 5.4 6.2 4.7
Danish 4.0 4.4 3.7 Persian 3.5 3.8 3.4
Dutch 8.4 8.8 7.7 Polish 3.8 4.3 3.0
Dutch (LassySmall) 2.8 2.3 2.4 Portuguese 3.1 3.2 3.4
English 5.9 5.4 5.2 Portuguese (BR) 2.7 2.8 3.1
English (LinES) 5.6 5.0 4.7 Romanian 3.3 3.1 2.9
English (ParTUT) 7.3 6.2 5.3 Russian 4.5 5.2 4.1
Estonian 11.8 11.7 9.7 Sanskrit 50.8 47.5 39.0
Finnish 5.7 5.3 4.2 Slovak 5.6 7.4 4.8
Finnish (FTB) 9.1 7.4 6.8 Slovenian 2.8 3.5 3.2
French 3.7 3.5 3.4 Slovenian (SST) 14.9 13.3 11.0
French (ParTUT) 11.7 7.1 5.9 Spanish 4.8 4.2 4.1
French (Sequoia) 3.1 3.3 2.6 Spanish (AnCora) 2.0 1.8 2.1
Galician 3.2 3.1 2.6 Swedish 3.9 4.2 3.7
Galician (TreeGal) 17.5 12.8 9.6 Swedish (LinES) 5.6 5.6 5.0
German 7.0 8.6 7.2 Tamil 22.8 14.5 13.4
Gothic 5.2 5.4 4.3 Turkish 6.8 6.7 5.7
Greek 3.8 4.6 3.2 Ukrainian 63.8 41.0 38.1
Hebrew 4.3 4.9 4.5 Urdu 7.7 8.3 6.7
Hindi 3.9 4.2 3.5 Vietnamese 13.7 12.4 11.7
Hungarian 8.2 9.5 6.6

Summary statistics below refer to all 65 treebanks, in both columns above

Mean error rate 9.0 7.9 6.7 No. of (shared) top ranks 15 4 48
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Figure 1: Relationship between training data size and model error rate. Filled markers
represent the best system for each dataset. Regression parameters: e = 771 · n−0.44
(bilty), e = 197 · n−0.33 (efselab), where e is the error rate in percent and n is the
training data size in tokens.
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access to manually extracted features. From Figure 1, it is clear that the neural network
model is less suitable in nearly all cases with less than 100,000 tokens of training data.
For treebanks with more training data available, the differences in accuracy are small
and non-systematic. An in-depth analysis of tagging errors might reveal some patterns in
which types of morphological or syntactic structures that are challenging to the different
models, but that would be beyond the scope of this work. Since the difference in accuracy
is not systematic between treebanks in similar or even the same languages, we do not
expect such an analysis to reveal particularly strong patterns. Thus, our conclusion is that
with respect to PoS tagging accuracy, the model of Plank et al. (2016) is less suitable than
a perceptron tagger for small datasets (less than 100,000 tokens), and equally suitable
for larger datasets.

We initially set out to investigate the tradeoff between accuracy and performance
in PoS tagging, but the results indicate that this might be a false choice—it is in fact
possible to have both. Perhaps our most important finding is that a perceptron-based PoS
tagger using decades-old technology outperforms a state-of-the-art neural network tagger.
Narrowly, in terms of accuracy, but by orders of magnitude in terms of computational
efficiency. By evaluating this on the most recent version of the Universal Dependencies
treebanks, we can make these conclusions with a high degree of certainty by basing them
on results from 65 treebanks in 48 languages. Supervised PoS tagging is often mentioned
as a typical example of a “solved” problem in NLP where progress has plateaued, and
this would seem to be supported by our results.
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