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Abstract

Many Uralic languages have a rich morphological structure, but lack morphological
analysis tools needed for efficient language processing. While creating a high-quality
morphological analyzer requires a significant amount of expert labor, data-driven
approaches may provide sufficient quality for many applications. We study how to
create a statistical model for morphological segmentation with a large unannotated
corpus and a small amount of annotated word forms selected using an active learning
approach. We apply the procedure to two Finno-Ugric languages: Finnish and
North Sámi. The semi-supervised Morfessor FlatCat method is used for statistical
learning. For Finnish, we set up a simulated scenario to test various active learning
query strategies. The best performance is provided by a coverage-based strategy
on word initial and final substrings. For North Sámi we collect a set of human-
annotated data. With 300 words annotated with our active learning setup, we see a
relative improvement in morph boundary F1-score of 19% compared to unsupervised
learning and 7.8% compared to random selection.
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1 Introduction
In morphologically rich languages, such as the Uralic languages, the number of observed
word forms grows rapidly with increasing corpus size. For instance, in Finnish, nouns
can have over 2000 different word forms due to case inflection and various clitics, while
verbs can have about 12 000 different forms due to person, number, tempus, and modus
inflection and especially to the abundance of infinitival and participle forms, the latter of
which are inflected like nouns (Karlsson, 1982). Naturally not all valid combinations of
suffixes are common in usage, but they are nevertheless not only theoretical possibilities
but part of the living language.

This vocabulary growth can be problematic for natural language processing (NLP)
applications, because it causes sparsity in the calculated statistics. Compared e.g. with
English which has a small number of inflectional forms, Finnish does not easily lend itself
to word form n-gram probability to be used as the basis of NLP tasks since not all possible
word forms, not to mention their combinations, occur even in large corpora. Thus it is
essential to model such languages on a sub-word level, using for example morphological
analysis that allows word forms to be analyzed into parts of two types: the lexical meaning
carrying part(s) and the various morphemes which carry grammatical information.

Despite the improvement of development tools and the increase of computational
resources since the introduction of finite-state transducer (FST) based morphological
analyzers in the 1980s (Koskenniemi, 1983), the bottleneck for the traditional method
of building such analyzers is still the large amounts of manual labor and skill that are
required (Koskenniemi, 2008). The strength of such analyzers is the potential to produce
output of high quality and detailed morphological tags.

Morphological surface segmentation is a relaxed variant of morphological analysis, in
which the surface form of a word is divided into segments that correspond to morphemes.
The segments, called morphs, are not mapped onto underlying abstract morphemes as in
FST-based analyzers, but concatenating the sequence of morphs results directly in the
observed word form. Allomorphic variation is left unresolved.

Although unsupervised learning of morphological segmenters does not reach the detail
and accuracy of hand-built analyzers, it has proven useful for many NLP applications,
including speech recognition (Creutz et al., 2007), information retrieval (Kurimo et al.,
2010), and machine translation (Virpioja et al., 2007; Fishel and Kirik, 2010; Grönroos
et al., 2015b). Unsupervised methods are especially valuable for low-resource languages,
as they do not require any expensive resources produced by human experts.

While hand built morphological analyzers and large annotated corpora may be un-
available due to the expense, a small amount of linguistic expertise is easier to obtain.
Given word forms embedded in sentence contexts, a well-informed native speaker of a
language can mark the prefixes, stems and suffixes of the words in question. A brief
collection effort of this type will result in a very small set of annotated words.

A small amount of annotated data of this type can be used to augment a large amount
of unannotated data by using semi-supervised methods, which are able to learn from
such mixed data. As little as one hundred manually segmented words have been shown
to provide significant improvements to the quality of the output when compared to a
linguistic gold standard (Kohonen et al., 2010). Adding more annotated data improves
the results, with rapid improvement at least up to one thousand words. Ruokolainen et al.
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(2016) provide an empirical comparison of semi-supervised methods for morphological
segmentation.

When gathering annotated training samples for a specific model, active learning may
provide better results than selecting the samples randomly. A common objective is to
reach adequate performance with a shorter annotator effort. In active learning, the anno-
tated words are chosen according to some strategy, making use of information from the
available data set, previously selected words, and models trained in previous iterations.

In this work, we use active learning for morphological segmentation of Finnish and
North Sámi. This work extends the preliminary results in our previous work (Grönroos
et al., 2015a). We extend the work by including experiments in a second language:
Finnish. We explore several query strategies for selecting the words to annotate. The
comparison to random selection is more rigorously performed.

2 Related work on North Sámi
There has been research effort into FST-based morphology for Sámi languages (Trosterud
and Uibo, 2005; Lindén et al., 2009; Tyers et al., 2009). In particular, the Giellatekno
research lab1 provides rule-based morphological analyzers both for individual word forms
and running text, in addition to miscellaneous other resources such as wordlists and
translation tools. The morphological analyzer gives the morphological properties of a
word in the form of tags. For example, given the word vaddjojuvvon (“cut”, PASSIVE),
the analyzer produces the following output:2

(1)
vaddjojuvvon vadjat+V+TV+Der/PassL+V+IV+Ind+Prs+Sg1
vaddjojuvvon vadjat+V+TV+Der/PassL+V+IV+Ind+Prt+ConNeg
vaddjojuvvon vadjat+V+TV+Der/PassL+V+IV+PrfPrc

Speech technology tools for North Sámi have been explored in the DigiSami project3

(Jokinen, 2014), which is one of the projects in the Academy of Finland research frame-
work aimed to increase and support digital viability of less-resourced Finno-Ugric lan-
guages with the help of speech and language technology. DigiSami focuses especially on
North Sámi, and sets to collect data, provide tools, and develop technology to enable
North Sámi speech-based applications to be developed (Jokinen and Wilcock, 2014a).
Moreover, the project aims to encourage community effort for online content creation,
and for this, Wikipedia-based applications are supported, such as WikiTalk (Jokinen and
Wilcock, 2014b; Wilcock et al., 2016). This is a robot-application which allows the user
to interact with a robot concerning information in the Wikipedia articles.

For speech recognition, a method for statistical segmentation may be preferred over
rule-based morphological analyzers. A rule-based analyzer is limited in the vocabulary it
recognizes, and non-standard spellings might not be analyzed at all. In addition, the tag
set produced by the analyzer may be too rich. For instance, a morphological segmentation
of the above example word, vaddj + ojuvvo + n, consists of only 3 morphs, while the
Giellatekno analyzer gives a lemma and 6 to 8 tags. Such abstract tags produced by a

1http://giellatekno.uit.no/
2For tag definitions, see http://giellatekno.uit.no/doc/lang/sme/docu-sme-grammartags.html
3http://www.helsinki.fi/digisami/
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morphological analyzer are not directly applicable in speech recognition, which requires
lexical units that can be concatenated into the surface form of the words (Hirsimäki
et al., 2006). The work described in this paper directly supports development of the tools
that can be used to develop speech technology for North Sámi or other less-resourced
languages.

3 On North Sámi and Finnish Morphology
North Sámi (davvisámegiella) belongs to the Finno-Ugric languages and is related to
Finnish and other Baltic-Finnic languages. It is one of the nine Sámi languages spoken
in the northern parts of Norway, Sweden, Finland and Russia. North Sámi is the biggest
of the Sámi languages, with around 30 000 speakers. As the Sámi language speakers do
not necessarily understand each other, North Sámi functions as a lingua franca among
the Sámi speakers. It is also widely used in newspapers and text books, and there are
Sámi language TV and radio broadcasts.

Linguistically, North Sámi is characterized as an inflected language, with cases, num-
bers, persons, tense and mood. The inflectional system has seven categories: the nouns
have four inflection categories (stems with a vowel or a consonant, the so-called contract-
ing is-nouns, and alternating u-nouns), and the verbs have three conjugation categories
(gradation, three syllabic, and two syllabic verbs). The only monosyllabic verbs are “leat”
(to be) and the negation verb.4 The verbs and pronouns have specific dual forms besides
singular and plural forms, i.e. “we the two of us” and “we more than two”.

North Sámi features a complicated although regular morphophonological variation.
For instance, the inflected forms follow weak and strong grades which concern almost all
consonants. North Sámi is also a fusional language and a single morph can stand for more
than one morphological category. In a similar way as in Estonian, loss of certain suffixes
has resulted in complicated morphophonological alternations or gradation patterns in the
stem. This is especially true of the genitive-accusative form, e.g. girji (“book”, SgNom)
vs. girjji (“book”, SgGen-Acc).

Adjectives typically have two forms: predicative (duojár lea čeahppi “the craftsman
is skillful”) and attributive (čeahpes duojár “a skillful craftsman”) (Sammallahti, 1998).
Furthermore, for many adjectives the attributive form can take two alternative forms.
For example seavdnjat (“dark”) has the two attributive variants sevdnjes and seavdnjadis.

North Sámi has productive compound formation, and compounds are written together
without an intermediary space. For example nállošalbmái (“into the eye of the needle”),
could be segmented as nállo + šalbmá + i. North Sámi makes extensive use of derivation,
both in verbs and in nouns. For example the adjective muoŧŧái (“with many aunts”) is
derived in a regular manner from muoŧŧa (“aunt”).

In order to show applicability of the proposed method to another language, we include
experiments using Finnish. The choice of Finnish as the second language is motivated
by its morphological similarity to North Sámi, making it reasonable to use the results
of the Finnish experiment in designing the North Sámi experiment. In addition, we
can take advantage of the wide availability of data and tools for Finnish. The Morpho

4Like Finno-Ugrian languages in general, also North Sámi forms negation by a particular negation
verb which is inflected in person.
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Challenge data (Kurimo et al., 2007, 2010) processed by a morphological analyzer enable
the experiment with a simulated annotator.

North Sámi and Finnish morphology share many similarities. Nouns are inflected by
case and can have possessive suffixes attached, while verbs inflect by person, number,
tempus and modus. Morphemes are typically ordered according to the same structure,
such as in

(2) kisso
stem
bussá

+i +lla
PL. ADE.
+in

+nne
POSS.
+eaet

+kin
clitic
+ge

also on your cats

There are also syntactic similarities, such as forming negations using a negation verb.
Both languages have gradation of stems. There is even a large number of words with a
shared origin, both through the shared origin of the languages and through loaning of
words from Finnish to Sámi.

There are also some dissimilarities between the languages, including the dual form
for pronouns and verbs in North Sámi, and the number of cases (6 in North Sámi, 15 in
Finnish). Adjectives in Finnish do not have a separate attributive form.

Moreover, the morphophonology of the languages differs. North Sámi has neither
vowel harmony nor final consonant gemination. North Sámi has 30 consonants, which
is more than the 17 in Finnish, but less vowels (7 in North Sámi, 8 in Finnish) (Aikio,
2005; VISK, 2004). In North Sámi, gradation applies to almost all consonants, and thus
there is more morphophonological alternation than in Finnish.

4 Annotation of North Sámi Segmentation
Most North Sámi words have an unambiguous segmentation agreeing both with intuition
and with established linguistic interpretation. These words contain only easily separated
suffixes: markers for case and person, and derivational endings. However, some words
require the annotator to make choices on where to place the boundary. In this section, we
will describe the challenges faced during annotation, and the decisions made in response.

As a general principle, we aimed to maximize the consistency of the annotations.
For established linguistic interpretation we referred to the work by Aikio (2005); Álgu-
tietokanta (2006); Nickel and Sammallahti (2011); Sammallahti (1998).

Inflectional morphology is typically more straightforward to analyze than derivational
morphology. The optimal granularity on which to analyze derivations depends on the
needs of the application. It appears that the Giellatekno analyzer does not return verbs
derived from nouns to the originating noun, even though it does do so for verbs derived
from other verbs. We have segmented both derivational and inflectional morphology,
without marking the distinction in the segmentation. We deviate from the granularity
preferred by Giellatekno by also segmenting derivational suffixes that convert nouns into
verbs, if the boundary is distinct.

An exception was made in the case of certain lexicalized stems. These stems appear
to end with a derivational suffix, but removal of the suffix does not yield a morpheme at
all, or results in a morpheme with very weak semantic relation to the lexicalized stem.
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An example is ráhkadi + t (“make, produce”), rather than ráhka + di + t, compared to
ráhka + t (“crack”).

A related challenge was posed by certain lexicalized adverbial forms. These words
appear to contain suffixes that could have been segmented, but these suffixes do not have
their conventional function in the word. For example, the segmentations davá + s (“to
the north”) and davvi + n (“in the north”) would appear to contain the singular locative
and essive case marker, respectively, but would not have their conventional meanings. A
decision was made to leave these forms unsegmented.

To remain consistent, it was rather important that the annotator(s) recognized the
declensions of the words. This is because North Sámi has several declensions both in
nouns and verbs, and the segmentations often vary depending on them when following
grammatical interpretation.

A further challenge was posed by the extensive stem alternation and fusion in Sámi.
To maximize consistency, the segmentation boundary was usually placed so that all of the
morphophonological alternation remains in the stem. Even though language education
classifies verbs into verb types according to the suffix (-it, -at, -ut, …), we have segmented
the infinitive marker as -t. The preceding vowel is seen as part of the stem, undergoing
alternation for phonological and grammatical reasons. A similar decision was needed
for the multifunctional derivational ending of verbs, -d- or -di-. Also, the corresponding
literature shows some varying interpretations about these suffixes (Sammallahti, 1998;
Nickel and Sammallahti, 2011). For example boradit could be segmented both as bora +
di + t and bora + d + it. In this work we have used the former segmentation.

Exceptions include the passive derivational suffix, which is found as variants -ojuvvo-,
-juvvo- and -uvvo-, depending on the inflectional category and stem type. The pleonastic
derivational ending for actor occurs in the forms -jeaddji- and -eaddji-.

Observe that many of the segmented suffixes, such as -i, and -t, occur homonymously
in different word classes. For example -t could act as a marker for nominative plural in
nouns or a marker for present time Sg2 person in verbs, and can also have other functions.

5 Semi-supervised Morphological Segmentation
While unsupervised morphological segmentation has recently been an active topic of
research (Hammarström and Borin, 2011), semi-supervised morphological segmentation
has not received as much attention. Semi-supervised morphological segmentation can be
approached in many ways. One approach is to seed the learning with a small amount of
linguistic knowledge in addition to the unannotated corpus (Yarowsky and Wicentowski,
2000). Some semi-supervised methods where a part of the training corpus is supplied
with correct outputs have also been presented, including generative (Kohonen et al.,
2010; Sirts and Goldwater, 2013; Grönroos et al., 2014) and discriminative (Poon et al.,
2009; Ruokolainen et al., 2014) methods.

5.1 Morfessor FlatCat
As a method for morphological segmentation of words, we use Morfessor FlatCat (Grön-
roos et al., 2014). It is the most recent addition to the Morfessor family of methods for
learning morphological segmentations primarily from unannotated data.
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The method is based on a generative probabilistic model which generates the observed
word forms by concatenating morphs. The model parameters θ define a morph lexicon.
The morph mi is considered to be stored in the morph lexicon, if it has a non-zero
probability P (mi |θ) given the parameters.

Morfessor utilizes a prior distribution P (θ) over morph lexicons, derived from the
Minimum Description Length principle (Rissanen, 1989). The prior favors lexicons that
contain fewer, shorter morphs. The purpose is to find a balance between, on one hand,
the size of the lexicon, and, on the other hand, the size of the corpus D when encoded
using the lexicon θ. This balance can be expressed as finding the following Maximum a
Posteriori (MAP) estimate:

θ̂ = arg max
θ

P (θ |D) = arg min
θ

(
− logP (θ)− logP (D |θ)

)
. (3)

In order to use the annotations produced in the active learning for training Morfessor,
we employ the semi-supervised training approach by Kohonen et al. (2010). This involves
replacing the MAP estimate (3) with the optimization

θ̂ = arg min
θ

(
− logP (θ)− α logP (D |θ)− β logP (A |θ

)
, (4)

where A is the annotated training corpus, and α and β are the weights for the likelihood of
the unannotated corpus and annotated corpus, respectively. Both the hyper-parameters
α and β affect the overall amount of segmentation predicted by the model. The β
hyper-parameter also affects the relative importance of using the morphs present in the
annotated corpus, compared to forming a segmentation from other morphs in the lexicon.

Morfessor FlatCat uses a flat lexicon, in contrast to the hierarchical lexicon in the
Categories-MAP (Creutz and Lagus, 2005) (Cat-MAP) variant of Morfessor. In a hierar-
chical lexicon, morphs can be built using other morphs already in the lexicon, while in a
flat lexicon each morph is represented directly as a string of letters. Each letter requires
a certain number of bits to encode, making longer morphs more expensive to add to the
lexicon.

A hierarchical lexicon has some benefits in the treatment of frequent strings that are
not morphs, but it also presents challenges in model training. When using a flat lexicon,
all morph references point from the corpus to the lexicon, making ML estimation of HMM
parameters straightforward, and allowing the factorization required for the weighting of
the cost function components seen in Equation 4. When using a hierarchical lexicon, also
the references within the lexicon must be taken into account, making this approach to
semi-supervised learning inapplicable.

Moreover, for a flat lexicon, the cost function divides into two parts that have opposing
optima: the cost of the data (the likelihood) is optimal when there is minimal splitting
and the lexicon consists of the words in the training data, whereas the cost of the model
(the prior) is optimal when the lexicon is minimal and consists only of the letters. In
consequence, the balance of precision and recall of the segmentation boundaries can be
directly controlled by weighting the data likelihood using the hyper-parameters. Tuning
these hyper-parameters is a very simple form of supervision, but it has drastic effects
on the segmentation results (Kohonen et al., 2010). A direct control of the balance may
also be useful for some applications: Grönroos et al. (2015b) used this method to tune
segmentation for machine translation.
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Figure 1: A graph representation of the Hidden Markov model morphotactics, applied
to the example word sisafárrejeaddjin. The word boundary symbol is marked #. One
transition and one emission probability are indicated.

Figure 1 illustrates the hidden Markov model (HMM) used for modeling word for-
mation. The HMM has morph categories as hidden states and morphs as observations.
Each morph token is categorized as prefix (pre), stem (stm), or suffix (suf). Inter-
nally to the algorithm, a non-morph (non) category is used, intended to model frequent
substrings that are not morphs but fragments of a morph. HMM morphotactics were
previously used in the Categories-ML (Creutz and Lagus, 2004) and Cat-MAP variants
of Morfessor, but Morfessor FlatCat is the first method to combine the approach with
semi-supervised training.

In order to calculate the emission probability of a morph conditioned on the morph
category, P (mi | ci), the prior of Morfessor FlatCat includes encoding of the right and
left perplexity of the morph. The perplexity measures describe the predictability of the
contexts in which the morph occurs. Morphs with unpredictable right or left contexts
are more likely to be prefixes or suffixes, respectively. Longer morphs are more likely
to be stems. The perplexities and length in characters are turned into probabilities, by
applying a sigmoidal soft thresholding followed by normalization.

The benefit of the HMM morphotactics is increased context-sensitivity, which im-
proves the precision of the segmentation. For example, in English, the model can prevent
splitting a single s, a common suffix, from the beginning of a word, e.g. in *s + wing. Mod-
eling of morphotactics also improves the segmentation of compound words, by allowing
the overall level of segmentation to be increased without increasing over-segmentation
of stems. The presence of morph categories in the output makes it simple to use the
method as a stemmer by removing affixes and retaining only stems. The main benefits
of semi-supervised learning are in the modeling of suffixation. As the class of suffixes is
closed and has high frequency, a good coverage can be achieved with a relatively small set
of annotations, compared to the open morph classes such as compound parts. (Grönroos
et al., 2014)

The model parameters θ are optimized utilizing a greedy local search. In each step,
a particular subset of the boundaries is reanalyzed and the model parameters updated.

Morfessor FlatCat is initialized using the segmentation from the 2.0 version (Virpioja
et al., 2013) of Morfessor Baseline (Creutz and Lagus, 2002, 2007). It employs a morph
lexicon P (m |θ) that is simply a categorical distribution over morphs m, in other words
a unigram model.
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6 Active Learning
Data annotation is often performed for the specific goal of improving the performance of
a particular system on a task. This gives the opportunity to carefully select the data that
will be annotated, in order to maximize the effect and minimize the cost of annotations.
This annotation process with systematic (active) data selection is called active learning.
Many algorithms and methods exist for active learning, but they are not all equally
suitable in every situation.

Active learning methods can be divided into three frameworks: pool-based active
learning, (membership) query synthesis and stream-based selective sampling (Settles,
2009).

In pool-based active learning (Lewis and Gale, 1994), the system has access to a pool
of unlabeled data A and can request from the annotator true labels for a certain number
of samples in the pool. Pool-based active learning can be performed either on-line by
selecting one sample in each iteration, or as a batch algorithm by selecting a list of
samples at once, before updating the information available to the learner. Pool-based
active learning has been successfully applied in NLP (McCallumzy and Nigamy, 1998).

Pool-based active learning can be contrasted with query synthesis, in which the learner
generates samples to annotate de novo, instead of selecting from a pool of candidates.
These methods are difficult to apply to morphological segmentation, due to the challenge
of generating valid surface forms.

The third category, stream-based selective sampling, is similar to pool-based active
learning in that there is a pool of potential samples. In this framework, the samples come
in one by one, and the learner has to decide in an on-line fashion whether to query an
annotation for that sample or not.

In this work we apply pool-based active learning. Therefore we define the active
learning procedure as follows:

In each iteration of active learning, a query strategy is applied for selecting the next
samples to elicit and add to the annotated data. The query strategy has access to four
sources of information that can be used for guiding the decision at time t:

1. the training pool A,

2. the set of unannotated data D,

3. the current set of annotated data A<1...t>,

4. and the current best model trained with all training samples collected up to that
point M<t>.

A<t+1> = Strategy(A,D,A<1...t>,M<t>) (5)

In this work we make a distinction between the training pool A, and the entire unanno-
tated data D, even though they are often chosen to be the same set.

More general reviews of active learning have been written by Settles (2009) and Guyon
et al. (2011).
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Figure 2: The two first iterations of the active learning procedure applied in this work.
Dashed lines indicate the initialization of models. The dotted lines indicate that the
procedure can be repeated for additional iterations.

6.1 Active Learning Applied to Morphological Segmentation
Active learning methods have been applied for constructing FST-based analyzers by elic-
iting new rules from a user with linguistic expertise (Oflazer et al., 2001; Bosch et al.,
2008). These development efforts are fast for rule-based systems, but still require months
of work.

In the case of morphological segmentation, we try to assess the value of adding the
gold standard segmentation of new words into the annotated data set. The methods
have access to a list of the n current best segmentations Z<t>

i,(1) . . . Z
<t>
i,(n) for each word wi,

together with their likelihoods given the current model.
Figure 2 shows our active learning procedure, which starts from nothing but an unan-

notated corpus collected for other purposes. An initial model is trained in an unsupervised
fashion. The procedure then applies three components iteratively:

1. active selection of new words to annotate using the query strategy,

2. elicitation of annotations for the selected words, and

3. training of the new segmentation model using all available training data.

7 Query Strategies
Active learning requires a specific method for ranking the samples according to their
informativeness. Finding the true informativeness of a sample would require looping over
all samples in the pool, eliciting an annotation for the sample and training a new model

Northern European Journal of Language Technology, 2016, Vol. 4, Article 4, pp 47–72 
DOI 10.3384/nejlt.2000-1533.1644

56



with only that sample added. As the cost of finding the true informativeness would
completely negate the benefits, we need a surrogate objective function that is feasible to
optimize. This surrogate objective together with the method for optimizing it is called
the query strategy. The ranking of the training pool according to this query strategy can
then be used for selecting data.

Query strategies fall into two broad categories: strategies that primarily use the previ-
ously trained model for the task at hand in order to estimate the objective function, and
strategies that define the surrogate objective function separately, by directly modeling
the properties of the training set.

In the following section we describe a set of query strategies that are applicable to
active learning using Morfessor.

7.1 Uncertainty Sampling
Lewis and Gale (1994) introduced uncertainty sampling, which is one of the most com-
monly used methods (Settles, 2009; Guyon et al., 2011). It was used for the NLP tasks
of document classification by Lewis and Catlett (1994), and parsing and information
extraction by Thompson et al. (1999).

Uncertainty sampling uses the model’s estimate of the uncertainty of the decision
associated with a particular sample in order to select the additional samples to annotate.
The certainty is given by the likelihood of the current best segmentation, compared to
all alternative segmentations.

The next word to annotate A<t+1> at time step t is selected from A based on the
uncertainty of the current best segmentation Z<t>

i,(1) for each word wi

A<t+1> = arg max
wi∈A

[
1− P (Z<t>

i,(1) |wi;θ
<t>)

]
= arg min

wi∈A

P (Z<t>
i,(1) , wi |θ<t>)

P (wi |θ<t>)
, (6)

where the likelihood of the word with the current best segmentation P (Z<t>
i,(1) , wi |θ<t>)

is given by the Viterbi algorithm (Viterbi, 1967) and the likelihood of the word with any
segmentation P (wi |θ<t>) is given by the forward algorithm (Baum, 1972).

7.2 Margin Sampling
While uncertainty sampling compares the probability of the current best segmentation
to all alternative segmentations, margin sampling (Scheffer et al., 2001) only compares
to the second best alternative segmentation. The distance to the runner up is called the
margin. If the margin is large, the model is certain about the segmentation. Therefore,
the word with the smallest margin is selected.

A<t+1> = arg min
wi∈A

[
P (Z<t>

i,(1) |wi;θ
<t>)− P (Z<t>

i,(2) |wi;θ
<t>)

]
= arg min

wi∈A

P (Z<t>
i,(1) , wi |θ<t>)− P (Z<t>

i,(2) , wi |θ<t>)

P (wi |θ<t>)
(7)
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7.3 Query-by-Committee by Bracketing the Corpus Weight
In the query-by-committee (QBC) algorithm (Seung et al., 1992; Freund et al., 1997),
a committee of predictors independently give their prediction for each sample. The
samples that cause most disagreement among the committee members are considered
most informative to annotate.

In this experiment the committee consists of two Morfessor FlatCat models, trained
with the corpus coding weight hyper-parameter α set to values 10% above and below the
optimal value. The reasoning is that the uncertainty about segmentations that are sensi-
tive to a small shift in α is steering the hyper-parameter optimization. Annotating some
of these words may allow the global benefits of a slightly different α without introducing
errors in words containing the particular morphs in these annotations.

The algorithm filters the words in the training pool, leaving only the words that were
segmented differently by the two models in the committee.

A′ = {wi ∈ A : M<t>
1 (wi) ̸= M<t>

2 (wi)} (8)

In order to select a particular word from the set of filtered words, we pick the one
with largest sum of likelihoods given by the two models

A<t+1> = arg max
wi∈A′

[
P (Z<t>

i,(1) |θ
<t>
1 ) + P (Z<t>

i,(1) |θ
<t>
2 )

]
. (9)

This selects a word that has high likelihood under both models, but that the models still
disagree on.

7.4 Coverage of Initial/Final Substrings
The Initial/final substrings query strategy is inspired by the feature selection method
called coverage by Druck et al. (2009), which aims to select features that are dissimilar
from existing labeled features, increasing the labeled features’ coverage of the feature
space.

The method aims to select samples representative of the whole data distribution,
instead of querying uncertain samples under the current model, which are likely to contain
outliers and exceptional cases.

We apply the idea of coverage to selection of samples to annotate, by defining binary
features for the words, and then selecting words so that the features present in them
maximize coverage. Our active learning selection differs from the feature selection in
that only one sample is needed to cover a feature, instead of labeling all samples with
that feature.

We define the features to be substrings starting from the left edge (initial) or ending
at the right edge (final) of the word. The length of substrings is limited to between 2 and
5 characters. Let Ω(wi) be the set of such substring features in word wi.

When ranking the words, points are awarded for each substring s present in the ranked
word, unless that substring already occurs in the previously selected words. This can be
written as the maximization

A<t+1> = arg max
wi∈A

∑
s∈Ω(wi)

I
(
s /∈ Ω(A<j>) ∀j ∈ {1 . . . t}

) #(s)

N|s|
(10)
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where I is the indicator function, and #(s) the occurrence count of feature s. Dividing
by

Nk =

∑
s I(|s| = k)# (s)∑

s I(|s| = k)
(11)

normalizes the occurrence counts by the average occurrence count for substrings of the
same length.

This query strategy differs from the other compared methods in that it does not use the
Morfessor model when selecting words. However, it can be considered an active selection
strategy, as it does define a surrogate objective to systematically take into account the
available data A and the previous selections A<1...t>. A benefit of this strategy is that
the user does not have to interleave elicitation and Morfessor training. A large list of
words can be selected in advance.

7.5 Words without Stem
No stem is a query strategy specific to Morfessor FlatCat. It uses the morph category
tags in the current best analysis, to filter a smaller set of potential words from the pool.

Only words for which the current analysis does not contain any morph categorized as
stm are kept. This finds stems that are not yet included in the lexicon, and therefore
have been over-segmented into non:s. This improves the coverage of the morph lexicon.

The uncertainty measure is used for selecting individual words from the filtered set.

7.6 Consequent Non-morphemes/Suffixes
Consequent non/suf is another strategy specific to Morfessor FlatCat. It is similar to
the No stem strategy, filtering words to only the words with two or more consecutive
morphs categorized as non or suf. This strategy is designed to improve suffix chains, in
addition to finding over-segmented stems.

7.7 Representative Sampling
Xu et al. (2003) introduce representative sampling (RS), that selects samples which are
dissimilar to each other, in order to give a good coverage of the dataset.

Selecting dissimilar samples is of particular importance when selection and training
is done in batches instead of on-line. An on-line algorithm updates the uncertainty after
each sample, making it less likely to select redundant words than a batch algorithm.

We apply representative sampling by clustering the 500 top ranked words for the
Uncertainty and QBC strategies. We cluster the words using k-medoids, with k set
to 50. Levenshtein distance (Levenshtein, 1966) is used as the string edit distance. The
clustering is repeated 10 times, and the clustering with the smallest intra-cluster variation
is selected. The final selection consists of the 50 cluster medoid words.
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8 Evaluation
The word segmentations generated by the model are evaluated by comparison with an-
notated morph boundaries using boundary precision, boundary recall, and boundary F1-
score (see, e.g., Virpioja et al., 2011). The boundary F1-score equals the harmonic mean
of precision (the percentage of correctly assigned boundaries with respect to all assigned
boundaries) and recall (the percentage of correctly assigned boundaries with respect to
the reference boundaries).

Precision =
#(correct)

#(proposed) ; Recall = #(correct)
#(reference) (12)

Precision and recall are calculated using macro-averages over the words in the evaluation
set. In the case that a word has more than one annotated segmentation, we take the one
that gives the highest score.

We also report the scores for subsets of words consisting of different morph category
patterns found in the evaluation set. These categories are words that should not be seg-
mented (stm), compound words consisting of exactly two stems (stm+stm), a stem fol-
lowed by a single suffix (stm+suf) and a stem and exactly two suffixes (stm+suf+suf).
Only precision is reported for the stm pattern, as recall is not defined for an empty set
of true boundaries.

In addition to the annotated data, we can consider the analysis produced by the North
Sámi morphological analyzer from Giellatekno as a secondary gold standard. However,
comparing a morphological segmentation to a morphological tagging is not trivial. First,
tagging provides abundant information not present in the surface forms. Second, even
for tags that have an approximately corresponding morph in the word form, the mapping
between the tags and morphs is unknown and must be inferred.

Virpioja et al. (2011) describe several methods for the latter problem. We did pre-
liminary tests with the CoMMA-B1 score that is based on the co-occurrence of the mor-
phemes between the word forms. From the Giellatekno analyses, we split the word forms
according to the marked compound boundaries and selected a subset of tags related to
inflections and derivations. Then we ran CoMMA-B1 using the annotated test set words
as predictions and the modified Giellatekno analyses as a gold standard. This provided
precision 0.818, recall 0.155, and F1-score 0.261. While the scores are also affected by the
annotation decisions explained in Section 4, especially the low recall demonstrates that
evaluating morphological segmentation based on morphological tagging is problematic.

9 Experiment I: Comparison of Query Strategies
For this experiment, we simulate an annotator using 500 000 segmented word types
sampled from the Morpho Challenge 2007 (Kurimo et al., 2007) Finnish data set. This set
was analyzed using the two-level morphology analyzer FINTWOL by Lingsoft, Inc., after
which the analysis was mapped from the morpheme tags to surface forms of morphemes.
This mapping is nontrivial due to the abundance of morphological tags with no surface
representation, fusional morphemes, and allomorphy. The applied mapping is described
by Creutz and Lindén (2004).
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Figure 3: Comparison of different query strategies. The y-axis shows the performance
evaluated using F1-score for the Finnish test set, for models trained using varying amounts
of annotated data selected using the query strategy. The thick orange crossed line shows
the average of 5 random selections, while the shaded area shows the maximum and
minimum.

For hyper-parameter optimization, we used the 835 words in the Morpho Challenge
2010 (Kurimo et al., 2010) development set, and for evaluation the 224 939 words in the
corresponding test set.

We simulated an active learning setup using the large annotated data set, by applying
the query strategies, and then constructing annotated training sets of the selected words
with their annotations. The query strategies did not have access to the annotations of
the complete data set.

Regarding the hyper-parameters of Morfessor FlatCat, the corpus likelihood weight α
was set by grid search for each selection and iteration individually. In order to consider-
ably decrease the amount of computation, the value for the annotation likelihood weight
β was set using a heuristic formula optimized for Finnish:5

log β = 1.9 + 0.8 log |D| − 0.6 log |A|, (13)

where |D| and |A| are the numbers of word types in the unannotated and annotated
training data sets, respectively. Although it is not guaranteed to be optimal, using
the same heuristic value for all query strategies is not expected to favor any particular
strategy. The perplexity threshold was set to 75.

5The formula is based on work currently being prepared for publication by the present authors.
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Table 1: Sizes of the unannotated corpora used in Experiment II, and the initial division
into subsets.

Corpus Word tokens Word types
Den samiske tekstbanken 17 985 140 691 190
UIT-SME-TTS 42 150 8194

Development set – 200
Evaluation pool – 800
Training pool A – 7194

9.1 Results
Figure 3 shows the F1-score for different query strategies with increasing amounts of
annotations. The random selection baseline is averaged over 5 runs.

The only query strategy that consistently performs better than random selection is
Initial/final substrings. It appears to plateau after 200 annotated words. Inspection of
the selected words reveals an assortment of words with common suffixes and compound
modifiers.

The No stem strategy initially shows strong performance, but falls below random
selection when 250 or more words are annotated.

For the Uncertainty strategy, applying the Representative sampling improves perfor-
mance, but it should be noted that when only 50 words have been selected, it performs
worse than random selection. These first selected words appear to contain many outliers.

Margin sampling does not perform well when used with Morfessor FlatCat. Some
selected words have a small margin due to small differences in the category tagging of
morphs, which does not even affect the segmentation. Other words are outlier non-
words, with several low-probability segmentation alternatives. Margin sampling would
also benefit from applying the representative sampling, as it tends to select many words
that are similar to each other.

For the Query-by-Committee (QBC) strategy, only the best results which included
representative sampling (RS) are plotted. The method performed worse than random
selection, and was discontinued after 3 iterations. The selections of this strategy con-
sisted entirely of compound words, with much redundancy in compound parts despite
the representative sampling.

Based on these results, Initial/final substrings was selected as the main query strategy
for the North Sámi experiment. Uncertainty+RS was also included, due to its popularity
in the literature, and receiving the second highest score at 300 annotated words.

10 Experiment II: Active Learning for North Sámi
We used two different text corpora in our experiments. The sizes of the corpora are
shown in Table 1. The larger Den samiske tekstbanken corpus6 was only used as source

6Provided by UiT, The Arctic University of Norway.
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for a word list, to use as the unannotated training data. It contains texts of six genres:
administrative, bible, facta, fiction, laws and news.

The smaller UIT-SME-TTS corpus was divided into separate pools from which eval-
uation and training words were drawn for annotation. The sentences in which the words
occur were also extracted for use as contexts. To ensure that the evaluation words are
unseen, the words in the evaluation pool were removed from the other subsets.

The use of two corpora enables the release of the annotations with their sentence con-
texts. Selecting sentences from Tekstbanken would have precluded release, as the restric-
tive license of the Tekstbanken corpus does not allow republication. It also demonstrates
the effectiveness of the system under the realistic scenario where a large general-domain
word list for the language is available for use, even though the corpora themselves are
unavailable due to restrictive licensing. A similar scenario would be selection from a
specific target domain corpus.

In contrast to our preliminary work (Grönroos et al., 2015a) we used Morfessor Flat-
Cat during the entire experiment. We used Morfessor Baseline only as initialization
method for the initial Morfessor FlatCat model. FlatCat models in later iterations were
initialized from the unsupervised FlatCat model, as shown in Figure 2.

As prefixes are very rare in North Sámi, and none were seen in the annotations, we
disabled the prefix category by setting an extremely high perplexity threshold for prefixes.

In contrast to the Finnish used in Experiment I, we did not have a heuristic formula
for β similar to Equation 13 that would be suitable for North Sámi. However, as we had
a smaller number of compared methods, we could set all three hyper-parameters (corpus
likelihood weight α, annotation likelihood weight β, perplexity threshold for suffixes) by
a grid search for each selection and iteration individually.

10.1 Elicitation of Annotations
In this section, we describe the tool used for elicitation during this experiment, and
the resulting data set. For discussion on the challenges of annotating North Sámi for
morphological segmentation and our responses to them, see Section 4.

There are no efficient on-line training algorithms for Morfessor FlatCat. Thus we used
a batch procedure, by selecting a list of 50 new words to annotate with the query strategy
being evaluated, and re-trained Morfessor once the whole list had been annotated.

As the Initial/final substrings query strategy does not depend on the Morfessor model
during active selection, it was possible to evaluate in a single iteration selecting and
annotating the full list of 300 words. Subsets were also evaluated, to show the effect of
varying the size of annotations.

For the elicitation step, we developed a web-based annotation interface. A javascript
app using the jQuery framework was used as a front-end and a RESTful Python wsgi-
app built on the bottle framework7 as a back-end. For words in the training pool, the
interface shows the segmentation of the current model as a suggestion to the annotator.
Words in the development and evaluation pools are shown unsegmented, in order not to
bias the annotator.

The tool gives the option of providing a distinct segmentation for word tokens with
the same surface form, depending on the sentence context. Even word forms belonging to

7http://bottlepy.org/
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Figure 4: Evaluation using F1-score for the North Sámi test set, for models trained using
varying amounts of annotated data selected using the two selected query strategies. The
thick orange crossed line shows the average of 5 random selections, while the shaded area
shows the maximum and minimum.

different parts of speech could be homonymous through inflection, and therefore require
phrasal context to disambiguate. For example vearrái would be unsegmented if it occurs
as an adjective (“mean, evil”), but would be segmented vearrá + i if it occurs as the illative
of the noun vearri (“mistake, wrongdoing”).

In some rare cases there was no phrasal context provided with the word to be seg-
mented, making it impossible to disambiguate between possible alternative segmenta-
tions. This could be caused by isolated words in the corpus, or by mistakes in the
automatic tokenization. In these cases, the annotator had to make a judgment call on
how to disambiguate the word token.

The annotations were produced by a single Sámi scholar, who is not a native speaker
of Sámi. In total 2311 annotated words were collected, divided into 1493 randomly
selected word types and 818 actively selected word types. The total time spent by the
annotator was 32 hours.8 A second non-native Sámi speaking linguist independently
reannotated 815 of the same words. The principles for segmentation of ambiguous words
were discussed prior to the reannotation, but the work itself was independent. Comparing
the placement of morph boundaries in the annotations using Cohen’s kappa (Cohen, 1960)
results in an inter-annotator agreement of 0.82 (“almost perfect agreement”).

8Includes time spent during the preliminary experiments. Breaks longer than 30 minutes are omitted.
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Table 2: The model parameters, number of annotated words, and North Sámi test set
BPR, for models trained in each iteration of Experiment II. For random selection the
averages over all repetitions are shown. Note that the size of the annotated data set may
be less than the number of selected words, if non-words were selected.

Hyper-parameters Full test set
Model |A| α β ppl-thresh Pre Rec F1

Unsupervised 0 0.4 – 20 0.726 0.633 0.677
Random selection 50 0.48 18000 40 0.725 0.725 0.725
Initial/final substrings 50 0.4 15000 40 0.733 0.802 0.766
Uncertainty + RS 50 0.3 21000 25 0.687 0.769 0.726
Random selection 100 1.02 18000 40 0.746 0.721 0.734
Initial/final substrings 100 1.5 23000 40 0.765 0.769 0.767
Uncertainty + RS 99 0.8 16000 30 0.732 0.760 0.745
Random selection 150 1.30 15000 40 0.754 0.726 0.740
Initial/final substrings 150 1.7 19000 40 0.774 0.766 0.770
Uncertainty + RS 149 1.4 15000 60 0.757 0.757 0.757
Random selection 200 1.32 16000 40 0.750 0.743 0.746
Initial/final substrings 200 1.9 18000 40 0.767 0.780 0.773
Uncertainty + RS 198 1.7 14000 70 0.776 0.778 0.777
Random selection 250 1.56 14000 40 0.760 0.743 0.751
Initial/final substrings 250 1.7 16000 50 0.766 0.800 0.783
Uncertainty + RS 247 1.5 15000 80 0.768 0.811 0.789
Random selection 300 1.68 10000 40 0.763 0.732 0.747
Initial/final substrings 300 1.4 14000 40 0.767 0.819 0.792
Uncertainty + RS 297 1.5 14000 80 0.772 0.842 0.805

10.2 Results
Figure 4 shows the improvement of the F1-score as more annotations became available.
The random selection baseline was averaged over 5 repetitions.

As in Experiment I, the Initial/final substrings strategy performs consistently better
than random selection. In contrast to that experiment, its performance does not stagnate,
but accelerates in the last two iterations.

The results for the Uncertainty + Representative sampling strategy differ in several
ways from Experiment I. While performance at 50 words is again weak, it is at no iteration
worse than random selection. Performance increases rapidly, with Uncertainty + RS
surpassing Initial/final substrings when 200 words have been selected.

Table 2 shows the models trained in this experiment. For the full test set, we improve
the F1-score by 18.9% compared to unsupervised learning, with most of the improvement
coming from an increase in recall. There is also a small increase in precision. Compared
to random selection, the increase in F1-score is 7.8%.

The values for the hyper-parameters are also shown in Table 2. The optimal value for
the corpus likelihood weight α is different for unsupervised and semi-supervised training,
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Table 3: Boundary precision (Pre), recall (Rec), and F1-scores for different subsets of the
evaluation data.

STM STM+STM STM+SUF STM+SUF+SUF
Words in subset 228 55 335 65
Model |A| Pre Pre Rec F1 Pre Rec F1 Pre Rec F1

Unsupervised 0 .697 .897 .836 .866 .664 .427 .520 .715 .369 .487
Random selection 50 .648 .869 .848 .859 .696 .587 .637 .712 .433 .538
Initial/final substr. 50 .645 .827 .909 .866 .717 .716 .717 .733 .500 .595
Uncertainty + RS 50 .579 .820 .891 .854 .665 .654 .659 .751 .477 .583
Random selection 300 .705 .899 .807 .851 .739 .608 .667 .711 .477 .571
Initial/final substr. 300 .675 .842 .855 .848 .774 .743 .759 .715 .569 .634
Uncertainty + RS 297 .667 .867 .873 .870 .777 .779 .778 .769 .638 .698

with the change happening between 50 and 100 words. The same phenomenon could be
seen in Experiment I. Different local optima of α seem to be dominant, depending on the
influence of the annotations. Despite the decrease in overall segmentation caused by this
increase in α, the semi-supervised models segment ca 15% more than the unsupervised
model.

Statistical significance testing was performed using the Wilcoxon signed-rank test
(p < 0.01). The difference between Initial/final substrings and random selection was
shown to be statistically significant for all sizes of annotated data. The difference between
Uncertainty + RS and random selection was only significant with 200 annotated words
or more. The difference between the two active selection strategies was only significant
at 50 annotated words.

Table 3 shows scores for different categories of words, defined using patterns of morph
categories. The selected patterns include all patterns with two morphs or less. For these
patterns, precision and recall have a straightforward interpretation. The stm+suf+suf
pattern was included to shed light on the handling of the boundary between two suffixes.
The selected patterns cover 86% of the words in the test set.

When comparing to unsupervised learning, all three forms of semi-supervised learning
give better results for suffixation (stm+suf and stm+suf+suf), already with just 50
annotated words. The score for words without internal structure (stm pattern) is only
improved when selecting 300 words randomly. For both suffix patterns, active selection is
superior to random selection, especially in recall. However, recall for the stm+suf+suf
remains low for all compared systems. The boundary between two suffixes is the most
difficult for Morfessor to place correctly (Ruokolainen et al., 2016).

Random selection gives the best precision for compound words (stm+stm), but has
low recall also for this pattern.

After excluding the stm pattern, the best performing method is unambiguous for a
particular number of annotations. If only 50 annotated words are used, the best perfor-
mance for all remaining patterns is given by the Initial/final substrings strategy. With
300 annotated words, the best performing strategy is Uncertainty + RS.

Initial/final substrings assumes that one sample is enough to cover a feature. In other
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words, it assumes that every word beginning or ending with a particular substring will
equally well teach the model how to segment other words with the same substring. In
practice this assumption does not hold, e.g. seammaláhkái (“by the same means”) is
segmented seamma + láhkái, while govvadahkkái (“to the picture maker”) is segmented
govva + dahkká + i. Both words end in kái, but it is segmented differently. The query
strategy is to some extent able to compensate by using longer substrings, and in practice
does not seem to make too many detrimental selections.

11 Conclusions
We have applied an active learning approach to modeling morphological segmentation
of two Uralic languages: Finnish and North Sámi. The work was accomplished using
open-source software.9 We present the collected language resources for the use of the
scientific community.10

We performed two experiments. In the first experiment, we compared seven different
query strategies using Finnish gold standard segmentations to simulate an annotator. In
the second experiment, we applied the active learning system to collect a set of human-
annotated data for North Sámi.

In both of the experiments, the Initial/final substrings query strategy performed better
than random selection regardless of the size of the annotated data set. In the Finnish
language experiment, it is clearly the best method.

The performance of the segmentation model was shown to increase rapidly as the
amount of human-annotated data was increased. With 300 annotated North Sámi words,
collected using the Uncertainty + Representative sampling query strategy, F1-score was
improved by 19% (relative) compared to unsupervised learning and 7.8% (relative) com-
pared to random selection. The increase was consistent over several sets of words with
different morphological patterns. The largest benefit of the annotations was in the mod-
eling of suffixation.

The results of the two experiments differ with regard to the performance of the Un-
certainty + RS query strategy. In the last iterations of the North Sámi experiment, it
outperforms Initial/final substrings, even though the difference is not statistically signif-
icant. The different outcomes may be caused by real differences between the morphology
of the languages, or the properties of the data sets. However, the difference could also
be an artifact caused by either the procedure of simulating an annotator or the heuristic
hyper-parameter values used in Experiment I.

If the proposed method is applied to a new language, the minimum amount of training
set words to annotate should be around 100, in addition to the development set needed
for the hyper-parameter optimization. The transition of the value of the hyper-parameter
α from the local optimum of unsupervised training to the optimum of semi-supervised
training has not yet occurred at 50 annotated words. Additionally, with only 50 an-
notated words, Uncertainty + RS does not yet outperform random selection. If a very
small number of words (100–200) are collected, we recommend using the Initial/final
substrings query strategy. As the number of annotations grows larger, active selection is

9Morfessor is available at http://www.cis.hut.fi/projects/morpho/.
The annotation and active learning tool is available at https://github.com/Waino/morphsegannot/.

10The data is available at http://research.spa.aalto.fi/speech/data_release/north_saami_active_learning/.

Northern European Journal of Language Technology, 2016, Vol. 4, Article 4, pp 47–72 
DOI 10.3384/nejlt.2000-1533.1644

67

http://www.cis.hut.fi/projects/morpho/
https://github.com/Waino/morphsegannot/
http://research.spa.aalto.fi/speech/data_release/north_saami_active_learning/


still preferable over random selection, but the choice of specific query strategy may be
less important.

The Initial/final substrings query strategy does not apply the current segmentation
model when making selections, even though incorporating information also from this
source might be useful. Hybrid strategies that combine or switch between multiple query
strategies were not explored in this work. Another avenue for future work is the ex-
ploration of different string similarity metrics for the representative sampling, as the
Levenshtein edit distance used in this work may not yield optimal clusters.
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