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Abstract

This work presents Stagger, a new open-source part of speech tagger for Swedish

based on the Averaged Perceptron. By using the SALDO morphological lexicon and

semi-supervised learning in the form of Collobert and Weston embeddings, it reaches

an accuracy of 96.4% on the standard Stockholm-Umeå Corpus dataset, making

it the best single part of speech tagging system reported for Swedish. Accuracy

increases to 96.6% on the latest version of the corpus, where the annotation has

been revised to increase consistency. Stagger is also evaluated on a new corpus of

Swedish blog posts, investigating its out-of-domain performance.

1 Introduction

Stagger is a part of speech (PoS) tagger for Swedish, based on the Averaged Perceptron
(Collins, 2002). It also performs named entity recognition (NER) and lemmatization, and
contains a robust tokenizer designed for Internet text. This is however separate from the
PoS tagging, and will not be further discussed here. Stagger is freely available1 under the
open-source GNU General Public License (GPL). Preliminary results on Stagger were
brie�y presented during the 2012 Swedish Language Technology Conference (Östling,
2012).

In this work, Stagger is shown to be the most accurate single tagger for Swedish,
improving upon the previously best tagger (Carlberger and Kann, 1999), as evaluated
by Sjöbergh (2003a), by a 10% error reduction. Further improvement is made when
using a newer version of the Stockholm-Umeå Corpus (SUC), where the annotation has
been revised to be more consistent. Work carried out in parallel with this (Loftsson and
Östling, 2013) has also shown a modi�ed version of Stagger to be the most accurate PoS
tagger for Icelandic.

With increasing amounts of text available through the Internet, text that may or may
not adhere to traditional written language norms, PoS tagging of this so-called user-

generated content has become an important area of research. Stagger's performance on
1http://www.ling.su.se/stagger
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System Accuracy (%)
Granska (Carlberger and Kann, 1999) 96.0
TnT (Brants, 2000) 95.9
fnTBL (Ngai and Florian, 2001) 95.6
MXPOST (Ratnaparkhi, 1996) 95.5
TreeTagger (Schmid, 1994) 95.1
TiMBL (Daelemans et al., 2001) 94.7
Stomp (Sjöbergh, 2003b) 93.8

Table 1: Tagging accuracy for 7 systems using 10-fold cross-validation on SUC 2. Repro-
duced from Sjöbergh (2003a, Table 1).

this domain is evaluated using a new, manually annotated corpus of Swedish blog texts:
the Stockholm Internet Corpus (SIC).

This article �rst reviews relevant previous work on PoS tagging, particularly for
Swedish (Section 2), followed by a presentation of the methods used in Stagger (Sec-
tion 3), then I present the data used in this study (Section 4), the experiments and their
results (Section 5) and �nally conclusions and directions for future research (Section 6).

2 Related Work

In this section, previous work on Swedish PoS tagging will be discussed, as well as the
feature-rich stochastic models that recent state-of-the-art PoS taggers for well-resourced
languages are based on.

2.1 Swedish PoS Tagging

Swedish is a Germanic language with moderately complex in�ectional morphology. The
de-facto standard tagset of Swedish from the Stockholm-Umeå Corpus (SUC) version 2.0
contains three delimiter types and 22 parts of speech, which combined with morphological
features makes a total of 153 di�erent tags (Källgren, 2006). This corpus is further
described in Section 4.1.

Megyesi (2001) and Sjöbergh (2003a) evaluate and compare a number of data-driven
PoS taggers for Swedish. Most of the systems evaluated are not adapted for Swedish, but
use generic and fairly language-independent models that have previously been developed
for and tested on languages other than Swedish. The primary exception is the Granska
Tagger (Carlberger and Kann, 1999), which was designed particularly for Swedish and
includes a large lexicon as well as a compound analyzer. In part because of this, Granska
Tagger comes out as the most accurate of seven PoS taggers in a 10-fold cross validation
evaluation on the SUC corpus (Sjöbergh, 2003a). The full results of this evaluation are
shown in Table 1. Note that the speci�cs of the evaluation are not given. Section 5.1
further discusses and compares Sjöbergh's evaluation with the one used in this work.

The top two taggers are both based on Hidden Markov Models (HMM), followed by a
transformation-based tagger (Brill, 1995). All three use relatively simple models, where
context is modeled primarily with tag bigrams and trigrams.
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The Maximum Entropy-based tagger of Ratnaparkhi (1996) and the memory-based of
Daelemans et al. (2001) were the only feature-rich models evaluated, but neither excelled.
As far as I am aware, before the present work, there have been no other experiments
published with feature-rich models used for Swedish PoS tagging.

2.2 Feature-Rich PoS Tagging

Ratnaparkhi (1996) used a Maximum Entropy model (Berger et al., 1996) to integrate a
large number of context features into a probabilistic model for PoS tagging. Since then,
other models using similar feature modeling, such as Support Vector Machines (SVM)
(Giménez and Màrquez, 2003), Conditional Random Fields (CRF) (La�erty et al., 2001)
and the Averaged Perceptron (Collins, 2002), have been used for PoS tagging and other
sequence labeling tasks.

Section 3.2 describes how features are modeled in the Averaged Perceptron-based
Stagger, which is fairly representative of the models just mentioned.

In recent years, several di�erent machine learning frameworks have been used to
perform PoS tagging with similar levels of accuracy when evaluated on the English Wall
Street Journal dataset as used by Collins (2002), which has become a de-facto standard
for evaluating and comparing PoS tagging algorithms. Toutanova et al. (2003) use a
Maximum Entropy framework and Shen et al. (2007) an Averaged Perceptron-based one,
in both cases moving beyond simple left-to-right search to achieve an accuracy of about
97.3% on the standard evaluation setup of Collins (2002). While recent CRF-based
systems have obtained good results with reasonable training times (Lavergne et al., 2010),
the Averaged Perceptron algorithm was chosen for its greater simplicity.

2.3 Semi-Supervised Learning

Data that is PoS-annotated by humans is scarce even for major languages in the world,
with at most a few million words available, and considerably less for most languages.
However, unannotated digital text is often available in much larger quantities, measured
in billions or trillions of words. Combining the information contained in both types
of data, so-called semi-supervised learning, has been shown to be a promising way of
improving the accuracy of PoS tagging and other tasks. Several di�erent approaches
have been used for semi-supervised PoS tagging, and some prominent examples will be
reviewed here.

Expectation-Maximization (EM) Elworthy (1994) explores how the Baum-Welch
algorithm (Baum, 1972), an instance of the more general Expectation-Maximization (EM)
method, can be used to combine unlabeled and annotated data in a HMM PoS tagger.
This early attempt was however unable to improve upon the fully supervised method in
most circumstances.

Suzuki and Isozaki (2008) use a CRF-based algorithm with Expectation-Maximization
(EM) on unlabeled text, reaching 97.40% accuracy using the same evaluation setup as
Collins (2002).
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Word Representations Turian et al. (2010) explore how di�erent types of word rep-

resentations (vectors or clusters) induced from unlabeled text can be added as features in
feature-rich supervised NLP tasks. They used neural language models (Mnih and Hinton,
2007; Collobert and Weston, 2008) and Brown et al. (1992) clusters.

Huang and Yates (2009) use word clusters induced from unlabeled text using the
Baum-Welch algorithm and using Latent Semantic Analysis (LSA) to improve a CRF-
based PoS tagger.

Graph-Based Methods Subramanya et al. (2010) construct a graph of similar n-
grams using both labeled and unlabeled data, and then use information from this to
perform semi-supervised training of a CRF model.

Bootstrapping Spoustová et al. (2009) use an ensemble of PoS taggers to tag the
unlabeled data, which is then used to train an Averaged Perceptron-based tagger, i.e.
a bootstrapping method. Søgaard (2011) achieves the highest reported accuracy on the
Wall Street Journal data as used by Collins (2002), 97.50%, using a fairly complex scheme
including both bootstrapping and word representations.

3 Methods

3.1 Averaged Perceptron 2

The Averaged Perceptron algorithm of Collins (2002) uses a discriminative, feature-rich
model that can be trained e�ciently. Recent research also shows that the algorithm,
given a good search method, can be used for PoS tagging with state-of-the-art accuracy
(Shen et al., 2007; Tsuruoka et al., 2011).

Features are modeled using feature functions (primarily binary) of the form φ(hi, ti)
for a history hi and a tag ti at position i in the sequence, in the way pioneered by
Maximum Entropy models (Berger et al., 1996; Ratnaparkhi, 1996). The history hi is a
complex object modeling di�erent aspects of the sequence being tagged. It may contain
previously assigned tags (ti−1, ti−2, . . .) in the sequence to be annotated, as well as other
contextual features such as the form of the current word, or whether the current sentence
ends with a question mark. Intuitively, the job of the training algorithm is to �nd out
which feature functions are good indicators that a certain tag ti is associated with a
certain context representation hi.

An Averaged Perceptron model consists of a set of feature functions φs, each paired
with a feature weight αs which is to be estimated during training. A scoring function
is de�ned over entire sequences, which in a PoS tagging task typically means sentences.
For a sequence of length n in a model with d feature functions, the scoring function for
a sentence w (w1, w2, . . .wn) is de�ned as:

scorew(t) =
n∑

i=1

d∑
s=1

αsφs(hi, ti)

2Parts 3.1�3.3 of this section are largely taken from 2.1�2.3 of Loftsson and Östling (2013)
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Note that unlike e.g. Maximum Entropy models (Berger et al., 1996), the scoring function
is not normalized to form a probability distribution over tags t. The highest scoring
sequence of tags:

t̃ = argmaxt scorew(t)

can be computed or approximated, for example, using the Viterbi algorithm or (as in the
present work) a beam search.

Training the model is done in an error-driven fashion: tagging each sequence in the
training data with the current model, and adding to the feature weights the di�erence
between the corresponding feature function for the correct tag sequence t and the model's
predicted tag sequence t̃.

Algorithm 1 Averaged Perceptron training iteration.
for all t, w ∈ T do

t̃← argmaxt′ scorew(t
′)

for i← 1..n do
for s← 1..d do

αs ← αs + φs(hi, ti)− φs(hi, t̃i)
end for

end for
end for

Algorithm 1 shows one iteration of the perceptron training algorithm over the training
set T of sequences. The model is initialized to αs = 0 for all s. Collins (2002) shows that
rather than using the estimated model parameters αs directly when tagging data outside
the training set, both tagging accuracy and the speed of convergence can be improved by
using values of αs averaged during the training process. In Stagger, weights are averaged
after every 4096 training instances (sentences), which seems to strike a good balance
between performance and accuracy.

3.2 Features

Stagger uses a basic set of binary features similar to that of Ratnaparkhi (1996). Table 2
shows the templates on which the basic features used in Stagger are based. One instance
of the �rst template may be:

φs(ti, hi) =

{
1 if ti = NNS ∧ wi = cats ∧ i 6= n

0 otherwise

or in other words, the value is 1 if the current tag is �NNS� (plural noun), the current
token is �cats�, and it is not the last token in the sentence. Otherwise the value is 0.

The features can be divided into two categories: history-dependent features that
use the values of previously assigned tags (ti−1, ti−2, . . .) in the sequence, and history-
independent features that do not. Making this distinction can lead to a large increase in
performance, since the history-independent feature functions only have to be evaluated
once for each tag and word sequence, while the history-dependent ones must also be
evaluated for every history.
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History-independent features
ti = x,wi = y, i = n
ti = x,wi = y, i = 1, c(i)
ti = x,wi−1 = y, wi = z
ti = x,wi = y, wi+1 = z
ti = x,wi−1 = y, wi = z, wi+1 = u
ti = x,wi−2 = y, wi−1 = z, wi = u
ti = x,wi = y, wi+1 = z, wi+2 = u
ti = x,wi+{−2,−1,1,2} = y
ti = x, prefix {1,2,3,4}(wi) = y, i = 1, c(i)
ti = x, suffix {1,2,3,4,5}(wi) = y, i = 1, c(i)
ti = x, k(i), �-� ∈ wi

ti = x, k(i), k(i+ 1)
History-dependent features
ti = x, ti−1 = y
ti−2 = x, ti−1 = y, ti = z
ti = x, ti−1 = y, wi = z
ti = x, ti−1 = y, wi = z, wi+1 = u

Table 2: Templates for the basic features of Stagger. ti is the tag at position i in the
sequence (of length n). wi is the lower-cased word at position i. k(i) is the type of token
i (e.g. digits, Latin letters, symbol). c(i) is the capitalization of token i (upper, lower,
N/A). x, y, z, u are constants, which in any given feature function has a �xed value.

In addition to the basic feature set detailed above, Stagger can also use Collobert and
Weston (2008) embeddings through feature functions of the following form:

φx,j(ti, hi) =

{
Ewi,j if ti = x

0 if ti 6= x

where Ewi,j is the j:th dimension of word wi's Collobert and Weston embedding. The
embeddings are described in Section 3.4.

3.3 PoS �lter

Ratnaparkhi (1996) observed that both accuracy and speed can be improved by using a
tag �lter, rather than considering all tags for every word, only those known to be possible
for a given word are considered. Stagger uses the following method for determining which
tags to consider for a given word: If the word w occurs in the training data (it is a known
word), only the tags found during training or in the lexicon entry for w are considered.
Other words (unknown words) are limited to a manually speci�ed list of tags from the
set of open word classes.

There is, however, one complication: during training, all words are known. Using the
tag �ltering approach exactly as described above during training would give unrealistically
good accuracy on the training data, but since the perceptron algorithm learns from its
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errors, this tends to lead to decreased accuracy on other data. To prevent this, words
occurring between 1 and 3 times in the training data, or only occurring in the lexicon,
may be assigned tags from the union of the set of tags they occur with in the training
data, the lexicon, and the set of open word class tags.

3.4 Collobert and Weston embeddings

Human-annotated text corpora typically do not reach much more than a million words in
size, while unlabeled text corpora can reach over a trillion. Semi-supervised data-driven
algorithms that make use of both human-annotated and unlabeled text data have been
successfully applied to many tasks in Natural Language Processing (NLP), see Section 2.3
for further information on the subject.

While some semi-supervised algorithms use unlabeled data in a highly task-speci�c
manner, Turian et al. (2010) explored how di�erent word representations could success-
fully be used in a very general way to turn a supervised algorithm semi-supervised. The
aim of word representations are to model the semantic and syntactic properties of words,
so that semantically and syntactically similar words tend to have similar representations.

One way of representing words is to use what is variously referred to as word vectors

or word embeddings, where real-valued vectors, typically of some tens or hundreds of
dimensions, are used to to represent (or embed) words.

Bengio et al. (2003) construct a neural language model using word embeddings, where
the word embeddings and the next word predictor were trained jointly. Although this
model performs well, it requires computing a normalized probability distribution over
the entire vocabulary at every training instance, which is infeasible for large corpora and
vocabularies.

Collobert andWeston (2008) use a similar model, but with the primary aim of comput-
ing good word representations rather than creating a practical language model. Instead
of computing a probability distribution over the entire vocabulary, their model only com-
putes a single value representing how well a focus word ��ts� into a context window.
Actual text windows from a corpus provide positive examples, and the same text win-
dows with the focus word corrupted (randomly replaced) serve as negative examples. In
this way, the computational complexity of each training instance is independent of the
vocabulary size, and it becomes possible to train the model on a large corpus, with a
large vocabulary, to obtain high-quality word embeddings (Bengio et al., 2009; Collobert
et al., 2011).

A Collobert and Weston language model consists of two parts, with the �rst part
being the word embeddings. Each word is represented by a vector in Rd. A vocab-
ulary of (�xed) size v is used, so the embeddings can be represented by a v × d em-
bedding matrix E. To obtain the network inputs from an n-gram (w1, w2, . . . , wn), we
concatenate the corresponding rows from the matrix E to obtain an nd-dimensional vector
(Ew1,∗, Ew2,∗, . . . , Ewn,∗).

The second part of the model consists of a neural network with nd inputs for an n-gram
where each word is represented by its d-dimensional embedding, a h-neuron non-linear
hidden layer, and a single linear output neuron.

Intuitively speaking, the network's output function s(x) is trained to compute the
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degree to which the focus word3 f (a constant 1 ≤ f ≤ n) ��ts� into the context of the
rest of the n-gram. Positive examples are n-grams x = (w1, w2, . . . , wf , . . . , wn) from a
text corpus, and for each x a corrupted n-gram x̃ = (w1, w2, . . . , w, . . . , wn) is produced
from x by replacing wf by another word w, selected uniformly from the vocabulary.

The model is trained by repeatedly iterating over n-grams x from a corpus, for each x
selecting one corruption x̃, and backpropagating the value of the error function max(0, 1−
s(x) + s(x̃)) to update the network weights and the embedding matrix. Thus, for an n-
gram x, we strive to make the value of s(x) − s(x̃) at least 1, for any of the possible
corruptions x̃ of x.

Turian et al. (2010) showed that adding Collobert and Weston embeddings as features
in a normal supervised setting can improve accuracy in named entity recognition (NER)
and shallow parsing.

4 Data

4.1 Stockholm-Umeå Corpus

The Stockholm-Umeå Corpus (SUC) is a balanced corpus of written Swedish, compiled
in the 1990s at Stockholm University and the University of Umeå (Ejerhed et al., 1992),
with the updated version 2 released in 2006 (Källgren, 2006) and version 3 in 2012. The
last version has previously only been presented in passing (Östling, 2012), so this section
will serve as a brief introduction to SUC 3 in particular.

SUC contains about 1 million words of material where each token is annotated with
lemma, PoS and named entity (NE) information. Versions 2 and 3 use a set of 153
PoS tags (of which 3 are delimiters) and 9 NE labels. It has long been recognized that
annotation inconsistency is an issue in SUC (Källgren, 1996), and in the decades since the
project �rst begun, di�erent groups and individuals have contributed to improving the
quality of the annotation: Britt Hartmann, Kenneth Wilhelmsson, the Swedish Treebank
project at Uppsala University, and the present author. In total, 2 952 PoS tags have
been changed between versions 2 and 3, or 0.25% of all tokens. 1 514 lemmas have been
changed, in many cases due to PoS tag changes.

Although previous studies have shown that using modi�ed versions of the SUC 2 tagset
can lead to more accurate PoS tagging (Forsbom, 2008; Carlberger and Kann, 1999), we
have decided to keep the SUC 2 tagset, since this has become a de-facto standard for
Swedish PoS tagging.

Forsbom and Wilhelmsson (2010) previously found that a subset of the annotation
changes now used in SUC 3 led to an improvement in accuracy for a data-driven PoS
tagger, compared to version 2 of SUC. In Section 5.3, this experiment is repeated with
Stagger and the full set of changes in SUC 3.

SUC consists of 500 text excerpts of about 2000 words each, and SUC 3 contains a
division of these into a default training-development-test split to facilitate reproducible
evaluations. The test set (10 �les, 2% of the total corpus) was chosen to be identical to

3Turian et al. (2010) and Bengio et al. (2009) use f = n, that is, they replace the last word in each
n-gram. Collobert and Weston (2008) use f = bn/2c, that is, they replace the center word. Here I follow
Collobert and Weston (2008) in replacing the center word, since there seems to be no good reason to
discard the context after a word.
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that of the Swedish Treebank project.4 The development set (10 �les, 2%) was chosen
randomly among the remaining �les,5 and the remaining part (480 �les, 96%) is used for
training.

4.2 SALDO

SALDO (Borin and Forsberg, 2009) is a digital lexicon of words and multi-word expres-
sions in modern Swedish, consisting of a semantic hierarchy as well as morphological
descriptions. In total, there are about 115 000 lemmas and 1 800 000 in�ectional forms.
SALDO is thus comparable in size to the lexicon used by Carlberger and Kann (1999),
and has the added advantage of being available under a permissive license allowing free
usage, adaptation and re-distribution.

Although not using the SUC tagset for its morphological descriptions, SALDO is still
largely compatible with it, and one can easily use the two resources together. In Stagger,
the possible tags of open-class words (nouns, verbs excluding participles, adjectives and
adverbs) from SALDO are added to the tag �lter.

4.3 Stockholm Internet Corpus

The Stockholm Internet Corpus (SIC) consists of about 8 000 tokens of text from Swedish
blogs, annotated by the present author with PoS tags and named entities using the SUC
tagset, with the addition of one extra PoS tag for emoticons.6 The corpus currently
contains 16 posts by 3 di�erent authors. We hope to extend this in the future, but due to
limited resources it has not yet been possible to reach a comfortable amount of material.

Although its size is currently very limited, SIC is su�ciently large to be used in a
basic experiment on out-of-domain tagging accuracy, presented in Section 5.3.

5 Experiments

In order to evaluate the accuracy of Stagger, and understand when it fails, a series of
experiments were carried out. Unless explicitly stated, all accuracy �gures reported refer
to complete tags, including part of speech as well as morphological information.

All the experiments described in this section use a beam size of 8, which was empiri-
cally found to o�er a good speed-accuracy tradeo�. With this setting, training a model
using the SUC corpus takes about one hour7 and the tagging speed is about 5000 to-
kens/second. Since only sentence-local context is used in the tagging process, the task is
trivially parallelizable and could easily be sped up on multiprocessor systems.

4Files: aa05, aa09, ba07, ea10, ea12, ja06, kk14, kk44, kl07, kn08
5Files: aa11, ae06, bb07, ec16, fh10, ha02, hf01, jg02, kk21, kl06
6Freely available under a Creative Commons license:

http://www.ling.su.se/sic
7All experiments were performed using a 2.4 GHz Intel Xeon E5645 CPU.
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5.1 Evaluation Setup

The default training-development-test data split of SUC 3 (see Section 4.1) o�ers a con-
venient path to reproducible evaluations, but since the test set is only about 20 000 words
(ca 2% of the corpus), the uncertainty is relatively large.

Therefore, in these experiments I also use 10-fold cross validation. The split for each
fold is obtained in the following manner:

• Files are sorted in alphanumerical order, and each �le is numbered 0 . . . 499 accord-
ing to its rank.

• For fold f , a �le with index i belongs to:

� the test set if i ≡ f mod 10

� otherwise, the development set if i+ 1 ≡ f mod 10 ∧ b i
10
c ≡ 0 mod 5

� otherwise, the training set

The development set is used to determine the number of iterations for the Averaged
Perceptron algorithm, and may be considered part of the training data.

By choosing every 10th �le for the test set, it becomes maximally balanced, as was
the goal of Sjöbergh (2003a). His evaluation however uses 475 �les for training in each
fold (unfortunately without specifying which), whereas mine uses only 450. Our �gures
should therefore be comparable, but probably di�er somewhat.

5.2 Collobert and Weston Embeddings

48-dimensional C&W embeddings were induced from a 2 billion word corpus of Swedish
blog posts,8 using my Svek software.9 The vocabulary size was 110 760, with a 2+2
context window, and 48 hidden neurons. The embeddings were trained for 10 billion
updates.

5.3 Results

Three di�erent con�gurations were evaluated:

• Stagger only

• Stagger with the SALDO lexicon

• Stagger with the SALDO lexicon and C&W embeddings as features

Each con�guration was evaluated on four data sets:

• SUC 2: Cross-validation on SUC 2 (see Section 5.1)

• SUC 3: Cross-validation on SUC 3 (see Section 5.1)

8Freely available with randomized sentence order under a Creative Commons license:
http://www.ling.su.se/sbs

9Freely available under the GNU General Public License version 3:
http://www.ling.su.se/english/nlp/tools/svek/
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Con�guration SUC 2 SUC 3 Test 3 Blogs
Stagger 95.87 96.06 96.58 91.80
Stagger+SALDO 96.32 96.51 96.96 92.46
Stagger+SALDO+C&W 96.40 96.58 97.01 92.49

Table 3: PoS tagging accuracy in percent. The di�erence in accuracy between boldfaced
�gures and the normal �gures in the same column are signi�cant (at p < 0.001) using
McNemar's test. For instance, there is no signi�cant di�erence between the 92.46 and
92.49 �gures in the Blogs column, buth both are signi�cantly higher than the 91.80 �gure
above them.

Con�guration Known word Unknown word Total UWR
accuracy accuracy accuracy

Stagger 97.12 83.94 96.06 7.24
Stagger+SALDO 96.99 82.40 96.51 3.23

Table 4: PoS tagging accuracy and unknown word rate (UWR) in percent. Cross-
validation on the SUC 3 corpus, without C&W embedding features.

• Test 3: Training-test split of SUC 3 (see Section 4.1)

• Blogs: Trained on all of SUC 3, evaluated on SIC (see Section 4.3)

The result of the evaluation is shown in Table 3. We now turn to have a closer look at
how di�erent factors a�ect tagging accuracy.

Annotation Accuracy Using the basic tagger, there is an error reduction of 4.3% from
version 2 of SUC to the more consistently annotated version 3. In absolute terms, this
is an increase in accuracy of 0.19 percentage points, comparable to the 0.25% of tokens
that were changed in version 3 (see Section 4.1).

SALDO Adding the SALDO lexicon leads to a fairly large error reduction, 11.1% in
the SUC 2 cross-validation and 12.1% with SUC 3. This is not surprising, since SALDO's
morphology lexicon is both large and manually constructed, with over-generation of word
forms being a limited problem. In the SUC cross-validations, the unknown word rate
(UWR) is 7.24% without SALDO, but is reduced to 3.23% with SALDO. Table 4 shows
how the accuracy for known and unknown words vary, depending on whether or not
SALDO is used. Note that the unknown word accuracy is much lower than the 92.0%
reported by Carlberger and Kann (1999), who had an UWR of 6.6%. This di�erence is
surprising, and may re�ect either an implementation error or an issue with the feature
set used in Stagger.

Collobert and Weston Embeddings Using C&W embedding features led to a small
but statistically signi�cant error decrease in both of the cross-validations (2.1% and 1.4%
for SUC versions 2 and 3, respectively). On the smaller SUC 3 test set and blog corpus,
there was no signi�cant di�erence.
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Count Percentage Word
2054 4.47% som (that/which/who)
842 1.83% om (if/about)
622 1.36% så (so)
615 1.34% en (one/a/an)
429 0.94% för (for/too/because)
376 0.82% till (to, prep.)
373 0.81% på (at)
343 0.75% att (to, inf. marker)
338 0.74% andra (other/second)
330 0.72% ett (one/a/an)

Table 5: 10 words most frequently mis-tagged (SUC 3 cross-validation, no lexicon or
C&W features).

Count Percentage Word
95 14.2% å (and/to/at)
62 9.3% de (they/them/the/it)
58 8.7% o (and/to/at)
22 3.3% va (what/was)
21 3.1% så (so)
20 3.0% för (for/too/because)
13 1.9% B (used as a proper noun)
12 1.8% med (with/as well)
9 1.3% ,, (double comma)
8 1.2% som (that/which/who)

Table 6: 10 words most frequently mis-tagged (blog corpus, model trained on SUC 3 with
no lexicon or C&W features).

Blog Texts As expected, accuracy decreases when tagging the SIC corpus of blog texts.
The best model has an error rate of 7.51% on the blog data, more than twice as much as
when evaluated on SUC (3.43%). A handful of common words are responsible for most
of this increase in errors, as will be discussed further in Section 5.4.

5.4 Error Analysis

Källgren (1996) studied PoS tagging errors in an earlier version of the SUC corpus, and
found that a small number of ambiguous function words are responsible for a large portion
of errors. The evaluations carried out con�rm this, and additionally we see that this is
an even larger problem in the blog texts.

Table 5 shows the 10 words most frequently mis-tagged in the cross-validation evalu-
ation of SUC 3. Together, these represent 13.8% of the total tagging errors. While the
overall accuracy is lower when using SUC 2, the corresponding list (not shown) contains
essentially the same words.
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PoS Precision Recall F1-score
HS (possessive relative pronoun) 100.00% 99.38% 99.69%
PS (possessive pronoun) 99.38% 99.58% 99.48%
VB (verb) 98.82% 99.17% 98.99%
IE (in�nitive marker) 98.34% 98.98% 98.66%
PP (preposition) 97.65% 99.12% 98.38%
PN (pronoun) 98.10% 98.24% 98.17%
NN (noun) 97.90% 98.21% 98.06%
DT (determiner) 97.69% 98.33% 98.01%
KN (conjunction) 97.77% 97.52% 97.65%
RG (cardinal number) 97.39% 94.82% 96.08%
SN (subordinating conjunction) 96.79% 94.61% 95.69%
HD (relative determiner) 95.94% 93.76% 94.84%
JJ (adjective) 94.94% 94.04% 94.49%
HP (relative pronoun) 92.67% 96.32% 94.46%
AB (adverb) 94.44% 94.29% 94.36%
PM (proper noun) 93.03% 92.40% 92.71%
RO (ordinal number) 94.51% 90.33% 92.37%
IN (interjection) 93.66% 87.40% 90.42%
HA (relative adverb) 94.76% 86.22% 90.29%
PC (participle) 89.55% 90.97% 90.25%
PL (verb particle) 87.17% 83.11% 85.09%
UO (foreign word) 66.99% 39.91% 50.02%

Table 7: Precision, recall and F1-score for each major part of speech (SUC 3 cross-
validation, no lexicon or C&W features).

Table 6 shows the 10 most frequently mis-tagged words in the blog corpus evaluation,
and here the result is very di�erent from that of the SUC evaluation. 22.8% of the
errors are from the word variously spelled å or o, which in the standard written language
is spelled och (and), att (to, inf. marker) or å (at, variant of the more common på

in some expressions). The word de is used for two notoriously ambiguous words, de
(the/they, 11th most frequently mis-tagged word in SUC 3) and det (it/that/the, 13th
most frequently mis-tagged word in SUC 3). It is also sometimes used for dem (them).

The blog texts also contain instances of ambiguous function words, where a sense
that is normally rare in written language (and thus is not readily assigned by the tagger
model) is used frequently.

In total, the 10 most frequently mis-tagged words in the blog corpus are responsible
for 47.8% of all tagging errors, and cause most of the degradation in tagging accuracy on
this data compared to the SUC evaluation.

Table 7 shows the precision, recall and F1-score of each major part of speech (that is,
not including morphological features) in the SUC 3 evaluation. As might be expected,
towards the bottom of the table we �nd parts of speech that are genuinely di�cult to
demarcate, as experience with improving the annotation quality of the SUC corpus has
demonstrated.
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One of the most common clusters of mis-taggings concerns adverbs, prepositions and
verb particles, these together represent a total of 9.5% of all mis-tagged tokens. The
three categories share many word forms, and often stress patterns (not given in writing)
or context is the only way of choosing between the di�erent possible interpretations.
Adverbs are additionally often derived from neuter-gender adjectives, and confusions
between these are responsible for another 4.9% of errors.

Participles are at the center of another cluster of mis-taggings, and may be confused
with past-tense verbs, adjectives and nouns. Vague criteria in the corpus annotation
guidelines, such as the degree of semantic connection between a verb and a participle
derived from it, make it di�cult to achieve a high accuracy in the annotation of participles
and related categories. Forsbom (2008) shows that signi�cant error reductions can be
achieved by merging the categories of adjectives and past participles.

There are also frequent confusions of di�erent morphological forms within the same
part of speech. Some of the most common confusions are due to zero-marked plural
nouns, and adjectives with identical plural and (determined) singular forms.

6 Conclusions and Future Work

I have presented Stagger, a new PoS tagger for Swedish based on the Averaged Per-
ceptron (Collins, 2002). By using the SALDO lexicon (Borin and Forsberg, 2009) and
Collobert and Weston (2008) embeddings, Stagger reaches an accuracy of 96.4% using
cross-validation on the Stockholm-Umeå Corpus version 2 (Källgren, 2006), higher than
any of the single taggers in the evaluation of Sjöbergh (2003a), and on par with his voting
ensemble of 6 di�erent taggers.

Stagger does not use non-local features, but this is often necessary to decide e.g.
number in nouns and adjectives with identical singular/plural forms, and adding these
features is one promising direction for future work. Another fact revealed by the error
analysis is that some ambiguous function words stand for a considerable fraction of tag-
ging errors, and tracking long-range syntactic dependencies could help in disambiguating
these.

Loftsson and Östling (2013) show that in Icelandic, closely related to Swedish but
with a more complex morphology, it is bene�cial to add a morphological analyzer to
handle words not in the training data or lexicon. This is particularly important when the
di�erence between known word accuracy and unknown word accuracy is large, as is the
case with Stagger. Adding a morphological analyzer for Swedish would likely improve
accuracy somewhat.

To handle the language used in blogs and other user-generated content, it would seem
most urgent to obtain more training data in this genre, since the �rst such manually
annotated corpus for Swedish (see Section 4.3) is still in its cradle.
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