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Abstract

We present an empirical evaluation of three methods for the treatment of non-pro-
jective structures in transition-based dependency parsing: pseudo-projective pars-
ing, non-adjacent arc transitions, and online reordering. We compare both the
theoretical coverage and the empirical performance of these methods using data
from Czech, English and German. The results show that although online reordering
is the only method with complete theoretical coverage, all three techniques exhibit
high precision but somewhat lower recall on non-projective dependencies and can
all improve overall parsing accuracy provided that non-projective dependencies are
frequent enough. We also find that the use of non-adjacent arc transitions may lead
to a drop in accuracy on projective dependencies in the presence of long-distance
non-projective dependencies, an effect that is not found for the two other techniques.

1 Introduction
Transition-based dependency parsing is a method for natural language parsing based on
transition systems for deriving dependency trees together with treebank-induced classi-
fiers for predicting the next transition. The method was pioneered by Kudo and Mat-
sumoto (2002) and Yamada and Matsumoto (2003) and has since been developed by a
large number of researchers (Nivre et al., 2004; Attardi, 2006; Sagae and Tsujii, 2008;
Titov and Henderson, 2007; Zhang and Clark, 2008). Similar techniques had previously
been explored in other parsing frameworks by Briscoe and Carroll (1993) and Ratnaparkhi
(1997), among others.

Using greedy deterministic search, it is possible to parse natural language in linear
time with high accuracy as long as the transition system is restricted to projective de-
pendency trees (Nivre, 2008). While strictly projective dependency trees are sufficient to
represent the majority of syntactic structures in natural language, the evidence from ex-
isting dependency treebanks for a wide range of languages strongly suggests that certain
linguistic constructions require non-projective structures – unless other representational
devices such as empty nodes and coindexation are used instead (Buchholz and Marsi,
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2006; Nivre et al., 2007). This poses an important challenge for transition-based depend-
ency parsing, namely, to find methods for handling non-projective dependencies without
a significant loss in accuracy and efficiency.

Nivre and Nilsson (2005) proposed a technique called pseudo-projective parsing, which
consists in projectivizing the training data while encoding information about the trans-
formation in augmented arc labels and applying an approximate inverse transformation
to the output of the parser. In this way, the linear time complexity of the base parser can
be maintained at the expense of an increase in the number of labels and a lack of complete
coverage of non-projective structures. Attardi (2006) instead introduced transitions that
add dependency arcs between the roots of non-adjacent subtrees – what we will call non-
adjacent arc transitions – again maintaining linear time complexity but with incomplete
coverage of non-projective structures. More recently, Nivre (2009) introduced a different
extension that enables online reordering of the input words, leading to complete coverage
of non-projective structures at the expense of an increase in worst-case complexity from
linear to quadratic, although the expected running time is still linear for the range of
inputs found in natural language.

All three techniques have been reported to improve overall parsing accuracy for lan-
guages with a non-negligible proportion of non-projective structures, but they have never
been systematically compared on the same data sets. Such a comparison could poten-
tially reveal strengths and weaknesses of different techniques and pave the way for further
improvements, by combining existing techniques or by developing alternative methods.
Moreover, since properties of the techniques may interact with properties of the language
being analysed, we need to evaluate them on more than one language.

In this article, we perform a comparative evaluation of the three techniques on data
from three different languages – Czech, English, German – presenting different challenges
with respect to the complexity and frequency of non-projective structures. The meth-
ods are compared with respect to theoretical coverage, the proportion of structures in
a language that the method can handle, and empirical performance, measured by over-
all accuracy and by precision and recall on projective and non-projective dependencies,
respectively. The aim of the study is to compare alternative ways of extending the
standard transition-based parsing method to non-projective dependencies, not to evalu-
ate techniques for non-projective dependency parsing in general, which would be a much
larger endeavour.

The remainder of the article is structured as follows. In Section 2, we define the
background notions of transition-based dependency parsing. In Section 3, we review the
three techniques for non-projective parsing that are evaluated in this article – pseudo-
projective parsing, non-adjacent arc transitions, and online reordering. In Section 4, we
describe the data and the training regime that we used in our experiments, as well as
the metrics used to evaluate the three techniques. The results of our experiments are
presented and discussed in Section 5. Section 6 concludes the article.

2 Preliminaries
We start by defining the syntactic representations used in dependency parsing, and in-
troduce the framework of transition-based dependency parsing.
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Figure 1: Dependency graph for an English sentence.

2.1 Dependency Graphs

Given a set L of labels, a dependency graph for a sentence x = w1, . . . , wn is a labelled
directed graph G = (Vx, A), where Vx = {0, 1, . . . , n} is the set of nodes of G, and
A ⊆ Vx×L× Vx is a set of arcs. An example dependency graph for the English sentence

A hearing is scheduled on the issue today.

is shown in Figure 1. With the exception of the special node 0, each node represents
(the position of) a word in x, while an arc (i, l, j) ∈ A represents the information that
the dependency relation denoted by l holds between wi and wj. As an example, the arc
(3, sbj, 2) in Figure 1 asserts that hearing acts as the grammatical subject (sbj) of the
verb is, and the arc (7,det, 6) states that the is the determiner (det) of issue. In an arc
(i, l, j), the node i is called the head of the node j, and the node j is called a dependent
of i. A dependency graph is a dependency tree if each node has at most one head and
only the special node 0 has no head.

Given a dependency tree G = (Vx, A), an arc (i, l, j) ∈ A is projective, if each node k
in the interval between i and j is a descendant of i, meaning that either k = i, or k is a
descendant of some dependent of i. As an example, the arcs (2,nmod, 5) and (4,adv, 8)
in Figure 1 are non-projective, while all the other arcs are projective. A dependency tree
is projective if all of its arcs are projective.

2.2 Transition Systems

Each of the parsing techniques investigated in this article can be understood by means
of a transition system in the sense of Nivre (2008). Such a system is a quadruple

S = (C, T, cs, Ct) ,

where C is a set of configurations, T is a set of transitions, each of which is a partial
function t : C → C from configurations to configurations, cs is an initialization function,
mapping sentences to configurations in C, and Ct ⊆ C is a set of terminal configurations.

The transition systems that we investigate in this article differ only with respect
to their sets of transitions, and are identical in all other aspects. In all of them, a
configuration for a sentence x = w1, . . . , wn is a triple c = (σ, β,A), where σ and β are
disjoint lists of nodes in Vx, and A is a set of arcs. We will refer to the list σ as the stack,
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and the list β as the buffer of the configuration, and write σ with its topmost element to
the right, and β with its first element to the left. The dependency graph associated with c
is the graph Gc = (Vx, A). The initialization function maps a sentence x = w1, . . . , wn

to the configuration c = ([0], [1, . . . , n], ∅). In this configuration, the special node 0 is
the only node on the stack, while all other nodes are in the buffer, and the set of arcs
is empty. The set of terminal configurations is the set of all configurations of the form
c = ([0], [], A), for any set of arcs A. In these configurations, the special node 0 is the
only node on the stack, and the buffer is empty.

2.3 Transition-Based Dependency Parsing

A guide for a transition system S = (C, T, cs, CT ) is a function g that maps a configura-
tion c to a transition t that is defined on c. Given a transition system S and a guide g
for S, the following is an algorithm for deterministic transition-based dependency parsing:

Parse(x)
1 c← cs(x)
2 while c /∈ CT

3 do t← g(c); c← t(c)
4 return Gc

This algorithm repeatedly calls the guide, constructing a sequence of configurations that
ends with a terminal configuration, and returns the dependency graph associated with
that configuration. Guides can be constructed in many ways, but the standard approach
in data-driven dependency parsing is to use a classifier trained on treebank data (Yamada
and Matsumoto, 2003; Nivre et al., 2004).

Based on this algorithm, we define a deterministic transition-based dependency parser
as a pair P = (S, g), where S is a transition system, and g is a guide for S. Given a
sentence x, the parse assigned to x by P is the dependency graph Parse(x).

2.4 Oracles

To train a transition-based dependency parser, one can use an oracle o, a guide that has
access to the gold-standard graph G for a sentence x and based on this knowledge predicts
gold-standard transitions for x and G. Each pair (c, o(c)) of a current configuration c and
the transition o(c) predicted by the oracle defines an instance of a classification problem.
A classifier for this problem can then be turned into a guide: This guide returns the
transition predicted by the classifier if it is admissible, and otherwise returns a default
transition, which depends on the transition system.

The coverage of an oracle parser P = (S, o), denoted by DP , is the set of all parses
it can assign, to any sentence x and gold-standard graph G for x. Given a class D of
dependency graphs, a parser P is sound for D, if DP ⊆ D, and complete for D, if D ⊆ DP .
The coverage of an oracle parser P = (S, o) can be used to compute upper bounds on
the empirical performance of a parser P ′ = (S, g) that uses a treebank-induced guide g
trained on data generated by o. The upper bounds are reached when the predictions
of g coincide with the predictions of o for all sentences. This is what we will call the
theoretical coverage of P ′.
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Transition Source configuration Target configuration Condition

Shift (σ, i|β,A) (σ|i, β, A)
Left-Arcl (σ|i|j, β,A) (σ|j, β,A ∪ {(j, l, i)}) i 6= 0

Right-Arcl (σ|i|j, β,A) (σ|i, β, A ∪ {(i, l, j)})

Left-Arc-2l (σ|i|j|k, β,A) (σ|j|k, β,A ∪ {(k, l, i)}) i 6= 0

Right-Arc-2l (σ|i|j|k, β,A) (σ|i, j|β,A ∪ {(i, l, k)})

Swap (σ|i|j, β,A) (σ|j, i|β,A) 0 < i < j

Figure 2: Transitions for dependency parsing.

3 Techniques for Non-Projective Parsing
With the formal framework of transition-based dependency parsing in place, we now
define the concrete parsing techniques evaluated in this article.

3.1 Parser 0: Projective Parsing

The baseline for our experiments is the projective dependency parser presented in Nivre
(2009). This parser, which we will refer to by the name P0, is based on a transition
system with three transitions, which are specified in Figure 2:

(i) Shift dequeues the first node in the buffer and pushes it to the stack.

(ii) Left-Arcl adds a new arc with label l from the topmost node on the stack to the
second-topmost node and removes the second-topmost node.

(iii) Right-Arcl adds a new arc with label l from the second-topmost node on the stack
to the topmost node and removes the topmost node.

For training this parser, we use an oracle that predicts the first transition returned by
the tests 1, 2, 6 in Figure 3 in that order. The resulting parser is sound and complete
with respect to the class of projective dependency trees (Nivre, 2008), meaning that
each terminal configuration defines a projective dependency tree, and each projective
dependency tree can be constructed using the parser. Its runtime is linear in the length
of the input sentence.

3.2 Parser 1: Pseudo-Projective Parsing

The first non-projective parser that we use in our experiments is based on pseudo-pro-
jective parsing (Nivre and Nilsson, 2005), a general technique for turning a projective
dependency parser into a non-projective one. In a pre-processing step, one transforms
the potentially non-projective gold-standard trees into projective trees by replacing each
non-projective arc (i, l, j) with a projective arc (k, l, j) whose head k is the closest trans-
itive head of i. The training data is enriched with information about how to undo these
‘lifting’ operations. Taking the projectivized trees as the new gold-standard, one then
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Test Configuration Conditions Prediction

1 (σ|i|j, β,A) (j, l, i) ∈ AG Ai
G ⊆ A Left-Arcl

2 (σ|i|j, β,A) (i, l, j) ∈ AG Aj
G ⊆ A Right-Arcl

3 (σ|i|j|k, β,A) (k, l, i) ∈ AG Ai
G ⊆ A Left-Arc-2l

4 (σ|i|j|k, β,A) (i, l, k) ∈ AG Ak
G ⊆ A Right-Arc-2l

5 (σ|i|j, β,A) j <G i Swap
6 (σ, i|β,A) Shift

Figure 3: Oracle predictions used during training with a gold-standard tree G = (Vx, AG).
We write Ai

G for the set of those arcs in AG that have i as the head. We write j <G i to say
that j precedes i with respect to the canonical projective ordering in the gold-standard
tree.

trains a standard projective parser in the usual way. In a post-processing step, the
encoded information is used to deprojectivize the output of the projective dependency
parser into a non-projective tree. Since the information required to undo arbitrary lift-
ings can be very complex, deprojectivization is usually implemented as an approximate
transformation.

The coverage of a pseudo-projective parser depends on the specific encoding of how
to undo the projectivization. The more information one uses here, the more accurate the
deprojectivization will be, but the more burden one puts onto the projective parser, which
has to cope with a more complex label set. In this article, we focus on the Head encoding
scheme, which gave the best performance in Nivre and Nilsson (2005). In this scheme,
the dependency label of each lifted arc (i, l, j) is replaced by the label l ↑ l′, where l′
is the dependency relation between i and its own head. During deprojectivization, this
information is used to search for the first possible landing site for the ‘unlifting’ of the
arc, using top-down, left-to-right, breadth-first search.

To train the pseudo-projective parser, which we will refer to as P1, we use the same
oracle as for the projective P0.

3.3 Parser 2: Non-Adjacent Arc Transitions

The projective baseline parser P0 adds dependency arcs only between nodes that are
adjacent on the stack. A natural idea is to allow arcs to be added also between non-
adjacent nodes. Here, we evaluate a parser P2 based on a transition system that extends
the system for the baseline parser by two transitions originally introduced by Attardi
(2006) (see Figure 2):1

(i) Left-Arc-2l adds an arc from the topmost node on the stack to the third-topmost
node, and removes the third-topmost node.

(ii) Right-Arc-2l adds an arc from the third-topmost node on the stack to the topmost
node, and removes the topmost node.

1In Attardi’s paper, these transitions are called Right2 and Left2, respectively.
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Because of the non-adjacent transitions, the parser P2 has larger coverage than the pro-
jective system P0; however, it cannot derive every non-projective dependency tree, even
though Attardi (2006) notes that Left-Arc-2 and Right-Arc-2 are sufficient to handle
almost all cases of non-projectivity in the training data. The full system considered by
Attardi (2006) also includes more complex transitions.

To train P2, we use an oracle that predicts the first transition returned by the tests
1, 2, 3, 4, 6 in Figure 3 in that order. Such an oracle prefers to add arcs between nodes
adjacent on the stack, but can resort to predicting a non-adjacent transition if adjacent
transitions are impossible. The runtime of P2 is still linear in sentence length.

3.4 Parser 3: Online Reordering

The third approach to non-projective dependency parsing that we explore in this article
is to only add arcs between adjacent nodes as in projective parsing, but to provide the
parser with a way to reorder the nodes during parsing. We refer to this approach as online
reordering. The specific parser that we will evaluate here, which we will refer to as P3,
was proposed by Nivre (2009). It extends the projective parser by using a transition
Swap that switches the position of the two topmost nodes on the stack, moving the
second-topmost node back into the buffer (see Figure 2).

For training, P3 uses an oracle that predicts the first transition returned by the tests
1, 2, 5, 6 in that order. The canonical projective ordering referred to in test 5 is defined by
an inorder traversal of the gold standard dependency tree that respects the local ordering
of a node and its children (Nivre, 2009). In our experiments, we actually employ an
improved version of this oracle that tries to delay the prediction of the Swap transition
for as long as possible (Nivre et al., 2009); in previous experiments, this improved oracle
has almost consistently produced better results than the oracle originally proposed by
Nivre (2009). The obtained oracle parser is sound and complete with respect to the
class of all dependency trees. Its worst-case runtime is quadratic rather than linear.
However, Nivre (2009) observes that the expected runtime is still linear for the range of
data attested in dependency treebanks.

4 Methodology
In this section we describe the methodological setup of the evaluation, including data
sets, parser preparation and evaluation metrics.

4.1 Data Sets

Our experiments are based on training and development sets for three languages in the
CoNLL 2009 Shared Task: Czech, English, German (Hajič et al., 2009), with data taken
from the Prague Dependency Treebank (Hajič et al., 2001, 2006), the Penn Treebank
(Marcus et al., 1993), and the Tiger Treebank (Brants et al., 2002). Since we wanted to
be able to analyse the output of the parsers in detail, it was important to use development
sets rather than final test sets, which is one reason why we chose not to work with the more
well-known data sets from the tasks on dependency parsing in 2006 and 2007 (Buchholz
and Marsi, 2006; Nivre et al., 2007), for which no separate development sets are available.
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Table 1: Statistics for the data sets used in the experiments. # = number, % NP =
percentage of sentences with non-projective analyses, L = average arc length in words.

sentences arcs overall proj. arcs non-proj. arcs

# % NP # L % L % L

Czech

training data 38,727 22.42% 652,544 3.64 98.1% 3.62 1.9% 4.49
development data 5,228 23.13% 87,988 3.65 98.1% 3.63 1.9% 4.45

English

training data 39,279 7.63% 958,167 3.38 99.6% 3.36 0.4% 8.19
development data 1,334 6.30% 33,368 3.42 99.7% 3.40 0.3% 7.86

German

training data 36,020 28.10% 648,677 4.08 97.7% 3.92 2.3% 10.58
development data 2,000 26.90% 32,033 3.93 97.7% 3.77 2.3% 10.29

Another reason is that the newer data sets contain automatically predicted part-of-speech
tags (rather than gold standard annotation from treebanks), which makes the conditions
of the evaluation more realistic. Although the study of parsing algorithm performance
with gold standard annotation as input may be interesting to obtain upper bounds on
performance, research has also shown that performance under realistic conditions may be
drastically different (see, e.g., Eryigit et al., 2008). Since we specifically want to contrast
theoretical upper bounds – as measured by our theoretical coverage – with empirical
performance under realistic conditions, we therefore prefer to use the more recent data
sets without gold standard annotation. From the data sets in the CoNLL 2009 Shared
Task, the languages Czech, English and German were chosen because they represent
different language types with respect to the frequency and complexity of non-projective
structures, as seen below.

Table 1 gives an overview of the training and development sets used, listing number of
trees (sentences) and arcs (words), percentage of projective and non-projective trees/arcs,
and average length for projective and non-projective arcs. We see that non-projective
structures are more frequent in Czech and German, where about 25% of all trees and
about 2% of all arcs are non-projective, than in English, where the corresponding figures
are below 10% and 0.5%, respectively. Nevertheless, English is similar to German in
that non-projective arcs are on average much longer than projective arcs, while in Czech
there is only a marginal difference in arc length. This seems to indicate that the majority
of non-projective constructions in Czech are relatively local, while non-projective long-
distance dependencies are relatively more frequent in English and German. However, it
is worth emphasizing that the observed differences are dependent not only on structural
properties of the languages but also on the annotation scheme used, which unfortunately
is not constant across languages.
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4.2 Parser Preparation

For each of the four parsers described in Section 3, we ran oracles on the training set to de-
rive training instances for multi-class SVMs with polynomial kernels, using the LIBSVM
package (Chang and Lin, 2001), which represents the state of the art in transition-based
parsing (Yamada and Matsumoto, 2003; Nivre et al., 2006). Since the purpose of the
experiments was to systematically compare different techniques for non-projective pars-
ing, rather than estimate their best performance, we did not perform extensive feature
selection or parameter optimization. Instead, we optimized a feature model only for the
projective parser P0. For the pseudo-projective parser P1, we simply left the feature
model as it was. For the parser P2 with non-adjacent arc transitions, we extended the
lookahead into the stack by one node, based on the intuition that this parser should
be able to inspect the stack one level deeper than the projective parser to make use
of non-adjacent transitions. For the parser P3 with online reordering, finally, we added
a new feature that allows the parser to inspect the part-of-speech tag of the last node
swapped back into the buffer. In this way, we managed to keep the information available
to the parser guides relatively constant while adapting to the special properties of each
technique. The fact that we have not optimized all feature models separately is another
reason for only presenting results on the development sets, saving the final test sets for
future experiments. In the interest of replicability, complete information about features,
parameters and experimental settings is published on the web.2

4.3 Evaluation Metrics

We have used four different evaluation metrics, which are all common in the dependency
parsing literature and which complement each other by targeting different aspects of
parser performance:

• Attachment score:
Percentage of correct arcs (with or without labels).

• Exact match:
Percentage of correct complete trees (with or without labels).

• Precision:
Percentage of correct arcs out of predicted projective/non-projective arcs.

• Recall:
Percentage of correct arcs out of gold standard projective/non-projective arcs.

Applying these metrics to the output of the oracle parsers on the development sets gives
us upper bounds for each combination of parser and metric, what we call the theoretical
coverage of each technique. Applying the same metrics to the output of the classifier-
based guide parsers provides us with estimates of their empirical performance.

Note that the precision and recall measures used here are slightly unusual in that the
number of correct arcs may be different in the two cases, because the projectivity status
of an arc depends on the other arcs of the tree and may therefore be different in the

2http://stp.lingfil.uu.se/~kuhlmann/nejlt2010.html
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parser output and in the gold standard. For this reason, it is not possible to compute the
standard measure F1 as the harmonic mean of precision and recall.

5 Results
In this section, we discuss the experimental results for the three non-projective parsers
P1, P2 and P3 in comparison to the projective baseline P0.

5.1 Theoretical Coverage

Table 2 shows upper bounds for the performance of the parsers on the development data
in terms of (labelled and unlabelled) attachment score and (labelled and unlabelled)
exact match. This is complemented by Table 3, which shows the precision and recall
for projective and non-projective dependencies, both over all sentences and separately
for sentences with projective and non-projective trees, respectively. As expected, the
strictly projective parser (P0) has the lowest coverage on almost all metrics, and online
reordering (P3) is the only method with perfect coverage across the board. The difference
is especially pronounced for the exact match scores (LEM/UEM), where P0 only achieves
about 75% on Czech and German (but close to 95% on English). Unsurprisingly, P0 has
very close to 100% recall on projective dependencies in all languages, but precision suffers
because words that have a non-projective relation to their heads will by necessity be given
an incorrect projective analysis. The reason that recall on projective dependencies does
not always reach 100% in sentences with a non-projective analysis is that the projective
oracle is not guaranteed to be correct even for projective dependencies when the overall
structure is non-projective.

Turning to the two remaining techniques for non-projective parsing, we see that the
pseudo-projective method (P1) performs slightly better than non-adjacent arc transitions
(P2) on the overall metrics with close to perfect coverage on the attachment score metrics
(LAS/UAS), but the differences are generally small and P2 in fact has higher exact match
scores for Czech. Nevertheless, there is an interesting difference in the performance on
non-projective dependencies. With the use of non-adjacent transitions, P2 has perfect
precision – because it never constructs a non-projective arc that is not correct – but
relatively low recall – because some non-projective dependencies are simply beyond its
reach. With the use of pseudo-projective transformations, P1 is always able to predict a
non-projective analysis where this is relevant but sometimes fails to find the correct head
because of post-processing errors – which affects precision as well as recall. The trend is
therefore that P1 has higher recall but lower precision than P2, a pattern that is broken
only for Czech, where P2 has a much higher recall than usual. This result is undoubtedly
due to the fact that non-projective dependencies are on average much shorter in Czech
than in English and German, which also explains the unexpectedly high exact match
scores for P2 on Czech noted earlier.

Finally, it is worth noting that whereas P1 has almost perfect precision and recall on
projective dependencies, also in sentences with a non-projective analysis, P2 in fact errs
in both directions here. Precision errors can be explained in the same way as for P0,
that is, because some non-projective dependencies are out of reach, the parser is forced
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Table 2: Theoretical coverage on the development data. LAS/UAS = labelled/unlabelled
attachment score, LEM/UEM = labelled/unlabelled exact match

LAS UAS LEM UEM

Czech

P0 98.01% 98.09% 76.87% 76.87%
P1 99.77% 99.85% 97.86% 97.86%
P2 99.63% 99.74% 98.85% 98.97%
P3 100% 100% 100% 100%

English

P0 99.72% 99.72% 93.70% 93.70%
P1 99.98% 99.98% 99.55% 99.55%
P2 99.61% 99.61% 98.35% 98.35%
P3 100% 100% 100% 100%

German

P0 97.65% 97.65% 73.10% 73.10%
P1 99.84% 99.84% 97.90% 97.90%
P2 98.45% 98.45% 95.95% 95.95%
P3 100% 100% 100% 100%

to over-predict projective dependencies. Recall errors, on the other hand, arise because
of the bottom-up parsing strategy, where projective relations higher in the tree may be
blocked if some non-projective subtree cannot be completed. This is especially noticeable
for English and German, where non-projective dependencies tend to be longer and where
both precision and recall for projective dependencies drops to about 95% in sentences
with a non-projective analysis.

5.2 Empirical Performance

Table 4 reports the attachment and exact match scores of the classifier-based parsers,
and Figure 4 shows which of the differences are statistically significant at the 0.01 and
0.05 level according to McNemar’s test for proportions. Table 5 gives the breakdown
into projective and non-projective arcs, both overall and in projective and non-projective
sentences, respectively. The overall impression is that adding techniques for handling
non-projective dependencies generally improves parsing accuracy, although there are a
few exceptions that we will return to. Quantitatively, we see the greatest improvement
in the exact match scores, which makes sense since these are the metrics for which the
theoretical upper bounds improve the most, as seen in the previous section.

However, we also see that there are interesting differences between the three languages.
For Czech, all three techniques perform significantly better than the projective baseline
(P0) with almost no significant differences between them. For English, only the pseudo-
projective parser (P1) actually improves over the baseline, and the use of non-adjacent arc
transitions (P2) is significantly worse than the other two techniques. For German, finally,
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Table 4: Empirical performance on the development data. LAS/UAS = la-
belled/unlabelled attachment score, LEM/UEM = labelled/unlabelled exact match

LAS UAS LEM UEM

Czech

P0 79.65% 85.40% 27.87% 37.03%
P1 80.58% 86.28% 30.74% 40.74%
P2 80.64% 86.24% 31.87% 41.45%
P3 80.71% 86.34% 31.33% 41.83%

English

P0 84.87% 88.47% 17.84% 31.48%
P1 85.01% 88.55% 18.44% 32.23%
P2 84.64% 88.37% 16.64% 30.06%
P3 85.00% 88.63% 18.59% 32.16%

German

P0 83.27% 86.19% 31.90% 39.45%
P1 84.07% 87.01% 34.65% 42.90%
P2 82.76% 85.84% 32.50% 40.20%
P3 83.75% 86.63% 34.60% 42.55%

online reordering (P3) and P1 are both significantly better than P0 and P2, with signific-
antly better attachment scores for P3. Quantitatively, we find the greatest improvement
for Czech with up to 1 percentage point for LAS/UAS and 3–4 percentage points for
LEM/UEM, followed by German with slightly smaller improvements. For English, the
improvements are very marginal and mostly non-significant, which is probably due to the
much lower frequency of non-projective structures in the English data set, which means
that the theoretical upper bounds on performance are much closer to those of the pro-
jective parser (cf. Table 2). The fact that performance improves more for Czech than
for German, despite a slightly higher frequency of non-projective structures in the latter
language, probably has to do with the much higher average arc length for non-projective
dependencies in German.

The picture that seems to emerge from these results is that both pseudo-projective
parsing and online reordering improve overall parsing accuracy for languages where non-
projective dependencies have a non-negligible frequency, exemplified by Czech and Ger-
man, and do not hurt performance if such dependencies are rare, as in the case of English.
The use of non-adjacent arc transitions, by contrast, improves parsing accuracy only if
non-projective dependencies are both frequent and short, as in Czech, but can otherwise
hurt performance significantly, as in English and German.

Zooming in on precision and recall for projective and non-projective dependencies, it is
interesting to see that the inferior performance of P2 on English and German is primarily
due to a drop in recall (for English also in precision) on projective dependencies and
especially in sentences with a non-projective analysis. This is related to the observation
in Section 5.1 that recall errors on projective dependencies may arise because of the
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Figure 4: Statistical significance of the results in Table 4 (McNemar’s test). An arrow
P → P ′ indicates that the respective score for the parser P ′ is better than the score for P
with a difference statistically significant beyond the 0.01 level (solid line) or 0.05 level
(dashed line).
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bottom-up parsing strategy, where projective relations higher in the tree are blocked if
some non-projective subtree cannot be completed. This effect, which was visible in the
theoretical coverage results, apparently seems to carry over to the empirical performance
of classifier-base parsers. By contrast, for P1 and P3, we observe an increase in precision
on projective dependencies in non-projective sentences – because the parser is no longer
forced to predict projective approximations to non-projective structures – but without
any corresponding drop in recall.

Turning to the performance specifically on non-projective dependencies, we see that
all three techniques seem to result in relatively high precision – about 70–85% for all three
languages – but substantially lower recall – slightly below 50% for English and German
and up to 65% for Czech. The fact that both precision and recall is generally higher
for Czech than for the other languages can probably again be explained by the fact that
non-projective dependencies tend to be shorter there.

Comparing the three approaches, we see that the use of non-adjacent arc transitions
(P2) generally gives the highest precision, which is understandable given that the parser
is restricted to consider non-projective dependencies with only one intervening subtree,
dependencies that tend to be short and therefore easier to analyse in the context of a
parser configuration. The use of online reordering (P3), on the other hand, generally gives
the highest recall (although P2 is marginally better for German), which is natural since
it is the only method that has perfect theoretical coverage in this respect. For Czech, P3

also has very high precision, but for English and especially German it lags behind the
two other systems. We hypothesize that this pattern can be explained by the greater
average length of non-projective dependencies in the latter two languages, since a longer
distance between the two non-adjacent structures requires the parser to perform a more
complex sequence of Swap transitions in order to correctly recover the dependency, which
increases the probability of error somewhere in the sequence.

The pseudo-projective approach (P1), finally, exhibits relatively high precision on non-
projective dependencies but sometimes suffers from low recall, which can probably partly
be explained by the way its post-processing works. If the heuristic search fails to find a
suitable ‘landing site’ for an arc with an augmented arc label, the arc is simply relabelled
with an ordinary label and left in place. As a consequence, the pseudo-projective tech-
nique tends to underpredict non-projective dependencies – but for a different reason than
the parser with non-adjacent arc transitions – which benefits precision at the expense of
recall. On the other hand, pseudo-projective parsing is the technique that generally has
the highest accuracy on projective dependencies, also in non-projective sentences, which
is probably the reason why it is the only technique that significantly outperforms the
baseline on English, where non-projective dependencies are rare and high precision and
recall on projective dependencies therefore especially important for a net improvement.

6 Conclusion
The first conclusion of our study is that all three techniques for handling non-projective
dependencies can improve accuracy in transition-based parsing, provided that these de-
pendencies have a non-negligible frequency in the language at hand. The net effect on
overall performance metrics like attachment score is quantitatively small, because of the
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low frequency of non-projective dependencies, but the probability of getting a completely
correct parse clearly increases, as evidenced by the improved exact match scores. In
this respect, our results corroborate earlier findings reported for the different techniques
separately (Nivre and Nilsson, 2005; Attardi, 2006; Nivre, 2009).

The second conclusion is that all three techniques have very similar performance on
non-projective dependencies, with relatively high precision, ranging from 70 to 85%, but
lower recall, ranging from below 50% to at most 65%, but that there are significant
differences in their performance on projective dependencies. These differences are mainly
found in sentences for which the overall analysis is non-projective. In such sentences,
all three techniques improve precision to varying degrees – because they are not forced
to substitute projective dependencies for truly non-projective relations –, but the use
of non-adjacent arc transitions may lead to a significant drop in recall if non-projective
dependencies are too long to be handled by the transitions, in which case neighbouring
projective dependencies may be blocked as well. This is a result that has not been
reported in the literature before, and which emerges only as a result of a comparative
study using data from languages with different characteristics.

Although the experiments presented in this article have already revealed significant
differences both between languages and between techniques, it would be interesting to
look in more detail at the different linguistic constructions that give rise to non-projective
dependencies. Ideally, however, this should be done using annotation guidelines that are
standardized across languages to ensure that we are not comparing apples and oranges,
which probably calls for a community effort. Another direction for future research is to
extend the analysis beyond transition-based techniques and compare the performance of
other types of dependency parsers, in particular graph-based data-driven parsers (Mc-
Donald et al., 2005; McDonald and Pereira, 2006; Nakagawa, 2007; Martins et al., 2009),
but also grammar-driven approaches like those of Foth et al. (2004) and Schneider (2008).
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