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Abstract 
 

Language software applications encounter new words, e.g., acronyms, technical 
terminology, loan words, names or compounds of such words. To add new words to a 
lexicon, we need to indicate their base form and inflectional paradigm. In this article, 
we evaluate a combination of corpus-based and lexicon-based methods for assigning 
the base form and inflectional paradigm to new words in Finnish, Swedish and 
English finite-state transducer lexicons. The methods have been implemented with 
the open-source Helsinki Finite-State Technology (Lindén & al., 2009).  As an entry 
generator often produces numerous suggestions, it is important that the best 
suggestions be among the first few, otherwise it may become more efficient to create 
the entries by hand. By combining the probabilities calculated from corpus data and 
from lexical data, we get a more precise combined model. The combined method has 
77-81 % precision and 89-97 % recall, i.e. the first correctly generated entry is on the 
average found as the first or second candidate for the test languages. A further study 
demonstrated that a native speaker could revise suggestions from the entry generator 
at a speed of 300-400 entries per hour. 

 
 
1 Introduction 
 
New words are constantly finding their way into daily language use. This is particularly 
prominent in rapidly developing domains such as biomedicine and technology. The new 
words are typically acronyms, technical terminology, loan words, names or compounds of 
such words. They are likely to be unknown by most hand-made morphological analyzers. In 
many applications, hand-made guessers are used for covering the low-frequency vocabulary 
or the strings are simply added as such. 

Mikheev (1996, 1997) noted that words unknown to the lexicon present a substantial 
problem for part-of-speech tagging, and he presented a very effective supervised method for 
inducing English guessers from a lexicon and an independent training corpus. Oflazer & al. 
(2001) presented an interactive method for learning morphologies and pointed out that an 
important issue in the wholesale acquisition of open-class items is that of determining to 
which paradigm a given citation form belongs. 

Recently, unsupervised acquisition of morphologies from scratch has been studied as a 
general problem of morphology induction in order to automate the morphology building 
procedure. For overviews, see Wicentowski (2002) and Goldsmith (2007). If we do not need 
a  full  analysis,  but  only  wish  to  segment  the  words  into  morph-like  units,  we  can  use  
segmentation methods like Morfessor (Creutz & al., 2007). For a comparison of some recent 
successful segmentation methods, see the Morpho Challenge (Kurimo & al., 2007). 
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Although unsupervised methods have some advantages for less-studied languages, for the 
well-established languages, we have access to fair amounts of lexical training material in the 
form of analyzes in the context of more frequent words. Especially for Germanic and Finno-
Ugric languages, there are already large-vocabulary descriptions available and new words 
tend to be compounds of acronyms and loan words with existing words. In English, 
compound words are written separately or the junction is indicated with a hyphen, but in 
other Germanic languages and in the Finno-Ugric languages, there is usually no word 
boundary indicator within the compounds. It has previously been demonstraed by Lindén 
(2008a) that already training sets as small as 5000 inflected word forms and their manually 
determined base forms will give a reasonable result for guessing base forms of new words by 
analogy, which was tested on a set of languages from different language families, i.e. 
English, Finnish, Swahili and Swedish. 

In addition, there are a host of large but shallow hand-made morphological descriptions 
available, e.g., the Ispell collection of dictionaries (Kuenning, 2007) for spell-checking 
purposes, and many well-documented morphological analyzers are commercially available, 
e.g. Lingsoft (2008). It has also been demonstrated by Lindén (2009) that there is a simple 
but  efficient  way  to  derive  an  entry  generator  from  a  full-scale  morphological  analyzer  
implemented as a finite-state transducer. Such an entry generator can be used as a baseline. 

In this work, we propose and evaluate a new method for analogically determining the 
base form and inflectional paradigm of inflected forms of new words by using both corpus-
based and lexicon-based information. In Section 2, we outline the directly related previous 
work. In Section 3, we describe the new method. In Section 4, we present the training and test 
data.  In Section 5,  we evaluate the model.  In Section 6,  we discuss the method and the test  
results in light of the existing literature on analogy. 
 
2 Previous Work 
 
2.1 Corpus-based Base Form Guesser 
 
Assume that we have a set of words, ,WwÎ  from a text corpus for which we have determined 
the base forms, ,)( WBwb ÌÎ  i.e. the lexicon look-up form1. In addition, we have another set 
of words, ,WoÏ  for which we would like to determine the most likely base forms, ).(ob  For 
this purpose, we use the analogy that w  is to o  as )(wb  is to )(ob . This relationship is 
illustrated in Figure 1. 
 

)(:)(

:

obwb

ow
bb     

?:

:

koe

aikeellakokeella
bb  

 
Fig. 1. The analogy w  is to o  as )(wb  is to )(ob illustrated by the Finnish words kokeella 
‘with the test’ and aikeella ‘with the intention’. 
 

We use the analogical relation for deriving transformations )(wbw ®  from the differences 
between the known word and base forms. The transformations can then be applied to a new 
word o  in order to generate a base form that should be similar to an existing base form )(wb . 
Several transformations may apply to any particular o  and  we wish  to  determine  the  most  
                                                
1 The lexicon look-up form may in some languages be a root that is not used in running text. However, for the 
purpose of analogy, it is sufficient that the lexicon look-up form has been determined and added to the set of 
words, WwÎ . 
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likely )(ob in  light  of  the  evidence,  i.e.  we  wish  to  find  the )(ob , which maximizes the joint 
probability ( ))(),(),(, obwbwbwoP ®  for the new word o . 

The joint probability cannot be directly estimated from a corpus. However, we may 
assume that )(wb  and o are  independent  of  one  another  and  that  the  probability  of  o  is 
constant during the maximization. As an additional simplification, we can assume no 
knowledge of the distribution2 of the analog base forms, )(wb . By applying the chain rule to 
the joint probability and using the simplifying assumptions and the standard Viterbi 
approximation, Lindén (2008a) shows how to arrive at Equation 1: 

( ) ( ))()()(maxarg
)(

wbobPowbwP
ob

®
 

(1) 

The equation can be instantiated with a model for estimating the parameters from a character-
aligned corpus of word and base form pairs creating a probabilistic base form guesser. For 
aligning words pairs, see e.g. (Lindén, 2006). 

For the experiment the guesser was instantiated with a symmetrical model for 
concatenating morphology which is sufficient for a large set of languages. The model was 
successfully tested on Finnish, Swedish, English and Swahili (Linden, 2008a). For an 
illustration of the model, see Figure 2. 
 

dbdb

gaga

YC

YC

:

:
bb , 

 
Fig. 2. An instance of the analogy model, where stemsC  and Y  are any strings, and ba ® is 
a prefix transformation and dg ®  a suffix transformation. 
 

The likelihood of the stems C  and Y are proportional to their lengths3,  whereas  the  
likelihoods of the prefix ba ® and suffix transformation dg ®  are estimated from a corpus4. 
 
2.2 Lexicon-based Entry Generator 
 
Assume that we have a finite-state transducer lexicon T  which relates base forms, )(wb , to 
inflected words, w . Let w  belong to the input language IL  and )(wb  to the output language  

OL  of the transducer lexicon. Our goal is to create an entry generator for inflected words that 
are unknown to the lexicon, i.e. we wish to provide the most likely base forms )(ub , e.g. 
b(u)=’warble’, for an unknown input word u=’warbled’, ILuÏ .  In  order  to  create  an  entry  
generator, we first define the left quotient and the weighted universal language with regard to 
a lexical transducer. For a general introduction to automata theory and weighted transducers, 
see e.g. Sakarovitch (2003). 

We can regard the left quotient as the set of postfixes of language 1L  that complete words 
from a language 2L , such that the resulting word is in language 1L . If 1L  and 2L  are formal 

                                                
2 One could argue that the a priori probability of a base form correlates with how likely a concept is as a basis 
for an analogy, e.g. rare base forms by definition rarely reinforce our perception of suitable base forms. 
3 The motivation for having the word length proportional to the word probability is that generating a new stem 
essentially presupposes an almost random choice from an alphabet for each additional character. This is also 
consistent with Zipf’s second law that the negative log probability of the word is proportional to the word length 
as pointed out by Yves Lepage. 
4 From an analyzed and aligned corpus of word forms and base forms, it is possible to extract e.g. suffix and 
prefix transformations. For each aligned word form substring, it is possible to estimate the probability 
distribution of the base form substrings it corresponds to. 
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languages, the left quotient of 1L  with regard to 2L  is the language consisting of strings w  
such that xw  is in 1L  for some string x  in 2L . Formally, we write the left quotient as: 

}))()((|{\ 1221 LxaLxxaLL ÎÙÎ$=   (2) 

If L  is a formal language with alphabet S , a universal language, U , is a language 
consisting of strings in *S . The weighted universal language, W , is a language consisting of 
strings in *S  with weight )(wp  assigned to each string. For our purposes, we define the 
weight )(wp  to be proportional to the length of w . We define a weighted universal language 
as: 

})(|{ SÎ$= wwwW with weights ||)( wCwp = , (3) 

where C  is a constant.  
A finite-state transducer lexicon, T , is a formal language relating the input language IL  

to the output language OL . The pair alphabet of T  is the set of input and output symbol pairs 
related by T . An identity pair relates a symbol to itself.  

We create an entry generator, G , for the lexicon T  by constructing the weighted 
universal language W  for identity pairs based on the alphabet of 1L  concatenating it with the 
left quotient of T  for the universal language U  of the pair alphabet of T : 

U\)( TWTG =  (4) 

Theorem. Let T  be a weighted lexical transducer and W  a weighted universal language with 
transition weights dw + , where 0>d  and w  the  maximum  of  any  transition  weight  in  T . 
Then U\)( TWTG =  is the longest matching suffix entry generator (Lindén, 2009). 
 

The model is general and requires no information in addition to the lexicon from which 
the entry generator is derived. Therefore Lindén suggests that it be used as a baseline for 
other entry generator methods. 
 
3. Methodology 
 
Assume that we have a probabilistic utility for guessing base forms from inflected forms, 
ProbabilisticBaseFormGuesser (Lindén, 2008a). Also assume that we are able to create a set 
of base forms which are classified according to their inflectional paradigms, from which we 
derive a paradigm classifier for base forms, BaseFormParadigmGuesser (Lindén, 2008b, 
2009). For a cascade of analogies used in a base form and paradigm classifier, see Figure 3. 
 

)(:)(

:

obwb

ow
bb    

aiekoe

aikeellakokeella

:

:
bb  

))((:))((

)(:)(

obewbe

obwb
bb    

?:48

:

Dkoe

aiekoe
bb  

 
Fig. 3. The cascade of analogies where w  is to o  as )(wb  is to )(ob , and )(wb  is to )(ob as 

))(( wbe  is to ))(( obe as illustrated by the Finnish words kokeella5 ‘with the test’ and aikeella 
‘with the intention’. 

                                                
5 koe 48 D means that koe ’test’ belongs to the 48th paradigm and has stem gradation pattern D, i.e.‘k’ ↔ ‘ ’. 
Stem gradation indicates that the stem has different lengths in the stem consonant pattern according to the 
gradation triggered by the inflected form. A long pattern is called strong gradation and a short is called weak. 
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The paradigm classifier generates possible paradigm candidates for a base form by analogy. 
The two components can be used for creating a probabilistic entry generator by taking an 
inflected word form, WordForm, transforming it to a set of base forms with 
ProbabilisticBaseFormGuesser, and guessing their inflectional paradigms using the 
BaseFormParadigmGuesser. Entries generated from a word form by a cascade of 
probabilistic models encoded as weighted transducers are characterized by Equation 5. 
 

CorpusModel = WordForm o ProbabilisticBaseFormGuesser o 
BaseFromParadigmGuesser (5) 

 
As a baseline, we use the entry generators that have been automatically derived from full-
scale transducer lexicons, LexicalEntryGenerator (Lindén, 2009). The entry generators take 
an inflected word form, WordForm,  and  produce  a  set  of  base  forms  with  inflectional  
paradigms. Entries generated from a word form by a lexicon-based model encoded as a 
weighted lexical transducer are characterized by Equation 6. 
 

LexicalModel = WordForm o LexicalEntryGenerator (6) 
 
We combine the corpus-based model and the lexicon-based model by taking the surface 
projection of the output side of the weighted transducers and intersecting them in Equation 7. 
 

CombinedModel = proj(CorpusModel) & proj(LexicalModel) (7) 

 
In 3.1, we outline the implementation of the corpus-based paradigm guesser, and in 3.2, we 
describe the combination of the baseline model with the corpus-based paradigm guesser. All 
models have been implemented using our open-source Helsinki Finite-State Technology 
(Lindén & al. 2009) which can be freely downloaded from our web site (HFST, 2008). 
 
3.1 Corpus-based Entry Generator 
 
As the model for analogy between word forms and base forms is general, we can repeat the 
analogy when going from base forms to entries.  We take the entries ))(( wbe  for base forms 

)(wb  in a lexicon as our starting point and derive a suffix model for the analogy between base 
forms and lexical entries. See illustration in Figure 4. 
 

))((:))((

)(:)(

obewbe

obwb
bb    

?:48

:

Dkoe

aiekoe
bb  

 
Fig. 4. The analogy )(wb  is to )(ob  as ))(( wbe  is to ))(( obe as illustrated by the Finnish words 
koe ‘test’ and aie ‘intention’. 
 
From Equation 1, we derive Equation 8, 
 

( ) ( )))(())(()())(()(maxarg
))((

wbeobePobwbewbP
obe

®
 

(8) 
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which can be instantiated in the same way as the original model with the additional 
simplification that paradigm information is added only to the end of the entry resulting in the 
BaseFormParadigmGuesser. 

Both models are probabilistic and there is no particular need to extract the base forms as 
intermediate results, so the models can be combined sequentially into one single model 
implemented as a cascade of weighted finite-state transducers. The combined model yields 
the entry ))(( obe  for an inflected form o  according to Equation 9, 
 

( ) ( )
( ) ( ) ÷ø

ö
çç
è

æ
®

´®
))(())(()())(()(

)()()(
maxarg

))(( wbeobePobwbewbP
wbobPowbwP

obe  

(9) 

 
We instantiate the BaseFormParadigmGuesser with a suffixing model for adding 

paradigm information to base forms. For an illustration of the model, see Figure 5. 
The likelihoods of the stems C  and Y are proportional to their lengths, whereas the 

likelihoods of the suffix transformations dg ®  is estimated from a corpus. The two analogy 
models are cascaded in order to create base forms with paradigm information from inflected 
word forms. 
 

dd

gg

YC

YC

:

:
bb , 

 
Fig. 5. An instance of the analogy model, where stemsC  and Y  are any strings, and dg ®  a 
suffix transformation. 
 
3.2 Combined Entry Generator 
 
The corpus-based model needs more training data the more complex it becomes, i.e. the more 
linguistic parameters it has that need to be estimated from the corpus. In order to keep the set 
of training data within reasonable limits, we do not wish to add too much linguistic 
complexity into the corpus-based model. Instead we rely on the lexical-model for encoding 
prior linguistic knowledge. 

In Section 3.1, we explicitly extract the entries from the corpus-based model. However, 
we can store the entries in closed form in a weighted automaton. In Section 2.2, we described 
a lexicon-based entry generation model, i.e. the baseline method, which can be derived from 
a finite-state transducer lexicon of any language. The results from this model can also be 
stored in closed form in a weighted automaton. By combining the two results using automata 
intersection or transducer composition, we get a set of entries in closed form combining the 
likelihood estimates of both the corpus-data and the lexicon-data. The entry candidates can be 
extracted with an n-best algorithm. 

Generally, one can characterize the corpus-based entry generator, CorpusModel, as 
inducing a likelihood ordering over the possible base-forms for an inflected form, whereas 
the lexicon-based entry generator, LexicalModel, promotes entries that are paradigmatically 
motivated by the lexicon. By combining the probabilities calculated from the corpus data and 
the lexicon data, we get a more precise CombinedModel with the added benefit that we have 
one repository for statistical data and another for linguistic knowledge, which can both be 
updated independently. 
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4 Data Sets 
 
To test the entry generator for finite-state transducer lexicons, we created transducer lexicons 
from existing lexical resources for three different languages: English, Finnish and Swedish 
using the Helsinki Finite-State Technology (HFST, 2008; Lindén & al., 2009). In 4.1, we 
describe the lexical resources and outline the procedure for creating the finite-state transducer 
lexicon. Words unknown to the lexicons were drawn from three language-specific text 
collections. We manually determined the correct entries for a sample of the unknown words. 
In 4.2, we describe the text collections and the sample used as test data. In 4.3, we describe 
the evaluation method and characterize the baselines. 
 
4.1 Lexical Data for Finite-State Transducer Lexicons 
 
Lexical descriptions relate look-up words, e.g. base forms, to other words, e.g. inflected word 
forms,  and  indicate  their  relation  to  the  look-up  word.  In  a  morphological  lexicon,  this  
relation  can  be  described  either  as  a  base  form  classified  with  a  paradigm  and  a  set  of  
derivation  rules  for  the  word  forms  of  the  paradigm,  or  it  can  be  described  as  a  full-form  
lexical description with a list of all the inflected forms of each base form. Regardless of the 
initial form of the lexical description, the final morphological lexicon can be implemented 
with finite-state transducer technology. The morphological finite-state transducer lexicon 
relates a word in dictionary form to all of its inflected forms. For an introduction, see e.g. 
Koskenniemi (1983). Essentially this means that composing the transducer lexicon with one 
inflected  word  form  will  extract  a  new  transducer  containing  the  possible  base  forms  with  
morphological tags to indicate how the inflected word form is related to the base form. 

A weighted finite-state transducer lexicon can contain weights for many purposes. From 
our perspective, a useful set of weights are estimates of the relative frequency of the word 
forms encoding their a priori likelihoods. Acquiring such estimates requires a disambiguated 
corpus. As we only have lexical descriptions and, assuming that there are or we have created 
inflectional paradigms for each word in the lexicon, we can estimate the relative frequency of 
the paradigms. It has also been demonstrated by Karlsson (1992) that it is preferable to have 
as few parts as possible in a multipart morphological compound analysis. For lack of better 
a priori estimates, the weighted finite-state lexicon-based transducer lists the morphological 
analyses primarily according to the number of analyzed compound parts and secondarily in 
paradigm frequency order. 

Most languages have ready-made inflectional paradigms as their lexical description. From 
this a finite-state transducer lexicon can be manually compiled. However, for languages 
which typically have few inflected forms for each base form, it is feasible to have a full-form 
description  of  all  the  lexical  entries.  If  we  only  have  a  full-form  lexical  description  as  a  
starting point, we still need to induce paradigms in order to be able to generate lexical entries 
with complete sets of forms for new words. 
 
English. For English we use FreeLing 2.1 (2007). The FreeLing English lexical resource was 
automatically extracted from WSJ, with some manual post-editing and completion of the 
lexical entries. It contains about 55 000 word forms corresponding to some 40 000 different 
combinations of base form and part-of-speech. For each part-of-speech, English has only a 
small set of forms, which may be further restricted due to phonological or semantic reasons. 
In this particular case, the set of forms may also be restricted by the fact that the form did not 
occur in the Brown corpus.  

We induce paradigms from the full-form lexical description for English in the following 
manner: we automatically align the characters of the base form and the inflected forms and 
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determine the longest common prefix for the base form and all the inflected forms. The 
remaining  set  of  endings  with  morphological  tags,  possibly  with  some  characters  from  the  
stem, is considered a paradigm. Since some words may have individual patterns with missing 
forms, the automatically induced set of paradigms becomes relatively large. We get 489 
paradigms for English out of which only 151 occur more than once in a Zipf-like distribution. 
 
Finnish. In order to create the Finnish dictionary, we used the Finnish word list Nykysuomen 
sanalista (2007), which contains 94 110 words in base form. Of these, approximately 43 000 
are non-compound base forms classified with paradigm information. The word list consists of 
words in citation form annotated with paradigm and gradation pattern. There are 78 
paradigms and 13 gradation patterns. For example, the entry for käsi ’hand’ is käsi 27 
referring to paradigm 27 without gradation, whereas the word pato ‘dam’ is given as pato 1F 
indicating paradigm 1 with gradation pattern F. From this description a lexical transducer is 
compiled with a cascade of finite-state operations (Pirinen, 2008). For nominal paradigms, 
inflection includes case inflection, possessive suffixes and clitics creating more than 2 000 
word forms for each nominal. For the verbal inflection, all tenses, moods and personal forms 
are counted as inflections, as well as all infinitives and participles and their corresponding 
nominal forms creating more than 10 000 forms for each verb. In addition, the Finnish lexical 
transducer also covers nominal compounding. 
 
Swedish. For Swedish we use the open source full-form dictionary Den stora svenska 
ordlistan (Westerberg, 2008) with approximately 55 000 words in base form. For each base 
form,  the  part  of  speech  is  given.  For  each  part-of-speech,  there  is  a  given  set  of  inflected  
forms, e.g. for nouns there are always eight forms, i.e. all combinations of singular and plural, 
nominative and genitive, definite and indefinite forms. For any word form, there may be an 
empty slot, if the form is considered non-existent for some reason, e.g. phonologically or 
semantically. In addition, each word may have an indication of whether it can take part in 
compounding which is prolific in Swedish. 

We use the same procedure for inducing paradigms for Swedish as we used for English. 
We get 1333 paradigms out of which 544 occur more than once in a Zipf-like distribution. 
 
4.2 Test Data 
 
A set of previously unseen words in inflected form serves as the test words, for which we 
wish to determine their base form and inflectional paradigm. In order to extract word forms 
that represent relatively infrequent and previously unseen words, we used various text 
collections for English, Finnish and Swedish. We draw 5000 words at random from the 
frequency rank 100 001-300 000 as test material for each language. The most frequent word 
form has rank 1. The max rank for a language is the rank of its most infrequent inflected 
word form. Since we are interested in new words, we only count inflected forms that are not 
recognized by the lexical transducers we have created. However, from the test data, we 
remove strings with numbers, punctuation characters, or only upper case characters, as such 
strings also require other forms of preprocessing in addition to some limited morphological 
analysis.  
 
English. For English, we used part of The Project Gutenberg text collection, which consists 
of thousands of books. For this experiment we used the English texts released in the year 
2000 [http://www.gutenberg.org/]. The tokens consist of 266 000 inflected forms of 175 000 
base forms. 

Of the selected strings, 3100 represented words not previously seen by the lexical 
transducer. For these strings, correct entries were created manually for the first 25 %, i.e. 775 

8



new entries. Of these, 60 strings had verb form readings, 610 noun readings and 161 adjective 
readings, and 14 adverb readings. Only 79 strings had more than one reading.  

A sample of test strings are: florin, disfranchised, chimney-pieces, Beechwood, warbled, 
sureness, sitting-rooms, marmoset, landscape-painter, half-burnt, Burlington, …  
 
Finnish. For Finnish, we used the Finnish Text Collection, which is an electronic document 
collection of the Finnish language. It consists of 180 million running text tokens. The corpus 
contains news texts from several current Finnish newspapers. It also contains extracts from a 
number of books containing prose text, including fiction, education and sciences. Gatherers 
are the Department of General Linguistics, University of Helsinki; The University of 
Joensuu; and CSC–Scientific Computing Ltd. The corpus is available through CSC 
[www.csc.fi]. The tokens consist of 4 million inflected forms from 1.8 million base forms. 

Of the randomly selected strings, 1715 represented words not previously seen by the 
lexical transducer. For these strings, correct entries were created manually. Of these, only 48 
strings had a verb form reading. The rest were noun or adjective readings. Only 43 had more 
than one possible reading. 

A sample of test strings are: ulkoasultaan ‘by the appearance’, kilpailulainsäädännön ‘of 
the competition legislation’, epätasa-arvoa ‘unequality’, työvoimapolitiikka ‘labour policy’, 
pariskunnasta ‘from the married couple’, vastalausemyrskyn ‘of the objection storm’, 
ruuanlaiton ‘of the cooking’, valtaannousun ‘of the ascent to power’, suurtapahtumaan ‘for 
the mega-event’, ostamiaan ‘the ones that they had bought, … 
 
Swedish. For Swedish, we used the Finnish-Swedish Text Collection, which is an electronic 
document collection of the Swedish language of the Swedish speaking minority in Finland. It 
consisted of 35 million tokens. The corpus contains news texts from several current Finnish-
Swedish newspapers. It also contains extracts from a number of books containing fiction 
prose text. Gatherers are The Department of General Linguistics, University of Helsinki; 
CSC–Scientific Computing Ltd. The corpus is available through CSC [www.csc.fi]. The 
tokens consist of 765 000 inflected forms of 445 000 base forms. 

Of the selected strings, 1756 represented words not previously seen by the lexical 
transducer.  For  these  strings,  correct  entries  were  created  manually  for  first  25  %,  i.e.  439  
new entries. Of these, 37 strings had a verb form reading, 387 noun readings, 47 adjective 
readings. Only 48 strings had more than one reading. 

A  sample  of  the  test  strings  are:  finrummet ’the salon’, chansons ‘chansons’, 
översvämmande ‘inundating’, tonsiller ‘tonsils’, sjöfartspolitiska ‘of the maritime policy’, 
reliken ‘the relic’, oskött ‘unattended’, antidopingkommitté ‘anti-doping committee’, … 
 
4.3 Evaluation Measures, Baselines and Significance Test 
 
We report our test results using recall and average precision at maximum recall. Recall means 
all the inflected word forms in the test data for which an accurate base form suggestion is 
produced. Average precision at maximum recall is  an  indicator  of  the  amount  of  noise  that  
precedes the intended base form suggestions. For n incorrect suggestions before the m correct 
ones, we get a precision of 1/(n+m). If we have no noise before a single intended base form 
per word form, we get 100 % precision on average, and if we have no correct suggestion at 
maximum recall, we get 0 % precision. As only a small percentage of the test data have more 
than one possible outcome, we will use the first correct result for counting the average 
precision, i.e. 1/(n+1). The F-score is the harmonic mean of the recall and the average 
precision. 

The random baseline for Finnish is that the correct entry is one out of 78 paradigms with 
one out of 13 gradations, i.e. a random correct guess would on the average end up as guess 
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number 507. For English, an average random guess ends up in position 245 and, for Swedish, 
in position 667. 

As suggested by Lindén (2009), we use the automatically derived entry generators in 
Section 2.2 as baselines. Using his test data, the test results will be directly comparable to the 
baselines provided in Table 1. 

Table 1. Baselines for Finnish, English and Swedish entry generators. 
 
 
 
 
 
 

The significance of the difference between the baselines and the proposed methods is 
tested with matched pairs. The Wilcoxon Matched-Pairs Signed-Ranks Test indicates 
whether the changes in the ranking differences are statistically significant. For large numbers 
the test is almost as sensitive as the Matched-Pairs Student t-test even if it does not assume a 
normal distribution of the ranking differences.  
 
5 Experiments 
 
We test how well the entry generators outlined in Section 3 are able to predict the correct 
base form and paradigm for an inflected word form using the test data described in Section 4. 
Of the randomly chosen strings from the test data range, word forms representing previously 
unseen words were used as test data in the experiment. The generated entries are intended for 
human post-processing, so the first correct entry suggestion should be among the top few 
candidates, otherwise the ranking is considered a failure. We chose to study the top six 
candidates6. Homonyms and loan words may sometimes have several inflectional paradigms 
and therefore more than one suggestion may be correct. However, in the experiments only the 
first correct suggestion is counted. In 5.1, we test the corpus-based entry generators 
separately, and in 5.2, we test them in combination with the lexicon-based entry generators. 
In 5.3, we evaluate the significance of the test results. 
 
5.1 Corpus-based Entry Generators 
 
We evaluate the corpus-based entry generators separately for each test language. 
 
English.  The  English  entry  generator  generated  a  correct  entry  among the  top  6  candidates  
for  80  % of  the  test  data  as  shown in  Table  2  with  an  average  position  of  3.1  for  the  first  
correct entry with 80 % recall and 56 % average precision, i.e. a 66 % F-score. 
 
Finnish. The Finnish entry generator generated a correct entry among the top 6 candidates 
for  80  % of  the  test  data  as  shown in  Table  3  with  an  average  position  of  2.6  for  the  first  
correct entry with 80 % recall and 69 % average precision, i.e. a 74 % F-score. 
 

                                                
6 In general, 5-7 entities at a glance is the maximal cognitive load a human user is comfortable with. In addition, 
entries suggested below the 6th position rarely contribute correct results. 

Language Recall Precision F-score 
English 0.83 0.72 0.78 
Finnish 0.82 0.76 0.79 
Swedish 0.87 0.71 0.78 
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Table 2. Ranks of all the first correct entries by the English entry generator. 

Rank Freq Percentage 
#1 282 36.4 % 
#2 147 19.0 % 
#3 94 12.1 % 
#4 54 7.0 % 
#5 26 3.4 % 
#6 16 2.1 % 
#7-∞ 156 20.1 % 
 Total 775 100.0 % 

Table 3. Ranks of all the first correct entries by the Finnish entry generator. 

Rank Freq Percentage 
#1 984 57.4 % 
#2 193 11.3 % 
#3 95 5.5 % 
#4 56 3.3 % 
#5 35 2.0 % 
#6 15 0.9 % 
#7-∞ 337 19.7 % 
 Total 1715 100.0 % 

 
Swedish. The Swedish entry generator generated a correct entry among the top 6 candidates 
for  86  %  of  the  test  data  as  shown  in  Table  4  with  an  average  position  of  2.3  for  the  first  
correct entry with 86 % recall and 72 % average precision, i.e. a 78 % F-score.  

Table 4. Ranks of all the first correct entries by the Swedish entry generator. 

Rank Freq Percentage 
#1 259 59.0 % 
#2 66 15.0 % 
#3 26 5.9 % 
#4 15 3.4 % 
#5 9 2.1 % 
#6 3 0.7 % 
#7-∞ 61 13.9 % 
 Total 439 100.0 % 

 
5.2 Combined Entry Generators 
 
We evaluate each corpus-based entry generator in combination with its baseline model, i.e. 
combined with its lexicon-based entry generator. 
 
English.  The  combined  English  entry  generator  generated  a  correct  entry  among  the  top  6  
candidates for 97 % of the test data as shown in Table 5 with an average position of 1.56 for 
the first correct entry with 97 % recall and 81 % average precision, i.e. a 88 % F-score. Note 
that for English, all results below the 4th position are considered inaccessible and are counted 
as rank #7 or lower because the impression from a small test sample was that they were 
mostly incorrect and more confusing than helpful to a human reader. 
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Table 5. Ranks of all the first correct entries by the combined English entry generator. 

Rank Freq Percentage 
#1 522 67.4 % 
#2 175 22.6 % 
#3 52 6.7 % 
#4 0 0.0 % 
#5 0 0.0 % 
#6 0 0.0 % 
#7-∞ 26 3.4 % 
 Total 775 100.0 % 

 
Finnish.  The  combined  Finnish  entry  generator  generated  a  correct  entry  among  the  top  6  
candidates for 89 % of the test data as shown in Table 6 with an average position of 1.95 for 
the first correct entry with 89 % recall and 81 % average precision, i.e. a 85 % F-score. 
 

Table 6. Ranks of all the first correct entries by the combined Finnish entry generator. 

Rank Freq Percentage 
#1 1264 73.7 % 
#2 131 7.6 % 
#3 50 2.9 % 
#4 47 2.7 % 
#5 20 1.2 % 
#6 11 0.6 % 
#7-∞ 186 10.8 % 
 Total 1715 100.0 % 

 
Swedish. The combined Swedish entry generator generated a correct entry among the top 6 
candidates for 93 % of the test data as shown in Table 7 with an average position of 2.03 for 
the first correct entry with 93 % recall and 77 % average precision, i.e. a 84 %  F-score.  

Table 7. Ranks of all the first correct entries by the combined Swedish entry generator. 

Rank Freq Percentage 
#1 289 65.8 % 
#2 53 12.1 % 
#3 27 6.2 % 
#4 11 2.5 % 
#5 14 3.2 % 
#6 14 3.2 % 
#7-∞ 31 7.1 % 
 Total 439 100.0 % 

 
Table 8. Baselines and results for the corpus-based and combined  

entry generators for English, Finnish and Swedish. 
 

  Lexical  
Baseline   Corpus-based 

Model   Combined 
Model  

Language Recall Precision F-score Recall Precision F-score Recall Precision F-score 
English 0.83 0.72 0.78 0.80 0.56 0.66 0.97 0.81 0.88 
Finnish 0.82 0.76 0.79 0.80 0.69 0.74 0.89 0.81 0.85 
Swedish 0.87 0.71 0.78 0.86 0.72 0.78 0.93 0.77 0.84 
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5.3 Significance 
 
All the combined morphological entry generators were statistically highly significantly better 
than their lexical baseline according to the Wilcoxon Matched-Pairs Signed-Ranks Test. 
Despite the fact that the corpus-based entry generators score below their respective baselines, 
as can be seen in Table 8, they contributed an important source of probabilistic information 
when ranking the entry candidates in the combined entry generators. The improvement in F-
score of 6-10 percentage points from the baseline models for the combined models is also 
significant in practice. 
 
6 Discussion 
 
In this section, we give a brief overview of previous and related work on analogy and 
machine learning of morphology. For a full review of analogy, see Hoffman (1995). We only 
review some of the central concepts and provide pointers to the use of analogy in phonology 
and morphology. The status of analogy as an explanatory device and learning mechanism in 
cognitive science is well established. We relate the concept of analogical learning to other 
well-established machine-learning concepts. With this broad backdrop, we wish to motivate 
how some machine-learning efforts on automated entry generation for morphologies are 
comparable to the method we propose even if they may not have been conceived as instances 
of analogical learning. Many of the early efforts on entry generation from the 1990s focused 
on entry generation for parsers and machine translation systems and not so much on entries 
for morphological analyzers. A more in-depth comparison with these efforts is a topic for 
future work. 

In 6.1, analogy as a cognitive concept is presented. In 6.2, we introduce some key aspects 
of machine learning of morphology. In 6.3, we present some previous efforts in using 
analogical machine learning for natural language processing. In 6.4, we discuss methods 
related to our approach. In 6.5, we compare test results with previous efforts. In 6.6, we give 
some notes on the implementation of the methods. In 6.7, we discuss some future work. 
 
6.1 Analogy as a Cognitive Concept 
 
We first look at analogy as a general cognitive concept, and then we turn to how analogy as a 
cognitive concept influences linguistic thinking. Hoffman (1995) provides a survey of the 
concepts covered by analogy from the early Greeks to modern computer science.  He points 
out that the usage of analogy has evolved from being a concept of geometric proportions, A is 
to B as C is to D, to a creative rhetorical device, where A is in B as C is in D, and then finally 
to something that can be seen as a fundamental cognitive process. Hoffman deconstructs the 
concept and demonstrates that what we perceive as an analogy often depends on the inference 
constraints we agree on or are able to defend. 

Current efforts in cognitive research (Kurtz and Loewenstein, 2007; Gentner & al, 2004; 
Loewenstein & al, 2003) have shown that persons who are told to find the structural 
similarities between two seemingly unrelated problems are much more likely to use this 
structure when solving new problems or for transferring solutions from old problems than 
persons who are not told to relate the training problems. This has several implications, the 
least  controversial  of  which  is  that  humans  seem  to  apply  analogical  reasoning  better  after  
some minimally supervised training. 
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In linguistics, Itkonen and Haukioja (1997) show how analogies which hold both on the 
level of form, as well as on the level of meaning can be computed by relying at the same time 
on the surface and the structural representations. The generative approach to linguistics 
maintains that all surface forms are generated from abstract underlying forms, except maybe 
for a few odd cases. However, the pre-generative idea that surface forms can influence other 
surface forms, (e.g. paradigmatic analogy in historical linguistics) has reemerged in a number 
of formal models; e.g. Eddington (2006) demonstrates that analogy can predict all surface 
instances of words, not just the exceptional cases. Keuleers & al (2007) develop the view that 
word inflection is driven partly by non-phonological analogy, e.g. with orthography, 
semantics, etc., and that non-phonological information is of particular importance to the 
inflection of non-canonical roots, i.e. the inflection of new words. In two experiments, they 
demonstrate that analogy as a process is the most likely explanation for human inflection of 
new and previously unseen words and that this can be modeled in a computer simulation. 
 
6.2 Analogy and Machine Learning of Morphology 
 
We review some of the fundamental concepts underpinning machine learning and its 
application to morphology learning. Finally, we characterize analogy in terms of current 
machine learning concepts. Initially machine learning was concerned with whether negative 
evidence is needed and what can be learned from positive evidence alone. Early on, Gold 
(1967) showed that context-sensitive languages require an informant, i.e. both pre-tagged 
positive and negative information, and that not even regular languages can be learned from 
text alone, i.e. from raw positive information. That formal languages cannot be learned 
without negative evidence and that negative evidence is not readily available to children are 
two facts that have been widely used as evidence that learning language is special, i.e. the 
basic building blocks of language are largely innate. This line of reasoning is known as the 
argument from the poverty of the stimulus. A range of evidence which challenges this line of 
argumentation has been put forward by Manning in (Bod & al, 2003), the most important of 
which is evidence by Horning (1969) that, contrary to categorical grammars, probabilistic 
grammars are learnable form positive evidence alone.  

More recently the distinction between machine learning algorithms has been whether they 
learn in a supervised or an unsupervised fashion from positive evidence, i.e. do they learn 
from pre-tagged or raw input. Below, we review some of the supervised and unsupervised 
approaches to learning morphology. For an overview of recent work in the field of supervised 
and unsupervised learning of morphology, see Wicentowski (2002). For an overview of work 
in unsupervised segmentation and learning of morphology, see Goldsmith (2008). 

At the extreme of the supervised spectrum of morphology learning algorithms, we have 
e.g. Murf created by Carlson (2005). Murf is a program intended to induce a morphological 
transducer from traditional-style hand-tagged inflectional paradigm sets as training data 
augmented with negative evidence for exceptions. From a linguistic point of view Murf can 
be seen to implement some of the traditional principles of taxonomical morphemic analysis. 
Another system by Oflazer & al (2001) uses a semiautomatic technique for developing finite-
state morphological analyzers for use in natural language processing applications. The system 
generates finite-state analyzers from information elicited from human informants. Their 
approach uses transformation-based learning to induce morphographemic rules from 
examples and combines these rules with the elicited lexicon information to compile the 
morphological analyzer. As they themselves point out, there are also other opportunities for 
using machine learning in the acquisition process. For instance, one of the important issues in 
wholesale acquisition of open-class items is that of determining which paradigm a given 
citation form belongs to.  
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In order to achieve a morphological labeling of paradigmatic segments, we need hand-
tagged data in the form of paradigms and exemplars to learn from, i.e. we need supervised 
learning, but the challenge is to produce at least some of the training material for supervised 
algorithms in an unsupervised way in order to achieve minimal supervision. E.g. Yarowsky 
and Wicentowski (2000) use monolingual context such as word vectors and the Levenshtein 
distance between words to find morphologically corresponding verb forms, and Yarowsky & 
al (2001) use a multilingual context in the form of word correspondences in bilingual corpora 
to identify likely base forms for inflected verb forms with high accuracy. It had been noticed 
by Brown et al. (1992) that words that are semantically related have a higher probability than 
chance to co-occur within a window of 3 to 500 words of each other in running text, which 
led Baroni & al (2002) to use mutual information between pairs of nearby words in a corpus 
as a crude measure of semantic relatedness, whereas Moreau & al (2007) use documents in 
the same domain to find morphologically corresponding word forms. 

At the other extreme in the unsupervised end of the spectrum, is morphology learning 
from unstructured text without any supervision, i.e. methods which identify likely morphs 
and their morphotax. For language modeling, it is useful to have an algorithm which 
compresses a corpus in such a way as to generate a description of the corpus and the lexicon 
which is as brief as possible, also known as the general principle of Minimum Description 
Length. It turns out that this is directly useful in speech recognition (Creutz & al., 2006) as 
the language model can be optimized to contain more elaborate co-occurrence estimates for 
the most likely segments and their combinations while relying on back-off estimates for the 
remaining segments. Using unsupervised methods, it is also possible to identify segments 
which could form paradigms (Goldsmith, 2007). The goal of the unsupervised morphology 
discovery methods is not to produce a labeling, which is a human interpretation of the morph-
classes that may have been discovered, but to discover a morph inventory and to provide an 
account for how these morphs co-occur.   

In view of the machine learning concepts mentioned above, when defining analogy as a 
proportional relation between words “A : B :: C : D”, we need to specify at least the words A, 
B and C in order to infer D, which easily casts analogy as a supervised learning method. 
However,  if  in  some unsupervised  way,  as  outlined  above,  we  can  identify  the  words  A,  B 
and C that are likely to be semantically related in a proportional relation, analogy becomes a 
completely unsupervised or at most a minimally supervised method. 
 
6.3 Analogy in Natural Language Processing 
 
Analogy has been used as a device to explain phenomena on all levels of natural language, 
i.e. phonology, syntax and semantics, and to process various kinds of representations used in 
linguistic applications. On the phonological level, Goldsmith (2007) uses analogy mostly as 
an explanatory device for his algorithm for morpheme segmentation, Linguistica, which aims 
at discovering inflectional paradigms. He points out that an analogy like: charge : change :: 
large : ? is real but not particularly useful and that the frequency of occurrence can be used 
for identifying more useful analogies like: charge : charged : grade : graded. Goldsmith 
(2008) notes that analogy has the advantage that it can say something useful even about 
generalizations that involve a very small number of pairs (e.g., say : said :: pay : paid). It is 
more difficult for a purely unsupervised approach to become aware that those pairs of words 
should be related. 

In syntax, Itkonen and Haukioja (1997) studied analogies as a relation between surface 
and structure. In lexical semantics, Turney (2008) observes that recognizing analogies, 
synonyms, antonyms, and associations appear to be four distinct tasks, requiring distinct NLP 
algorithms. In the past, the four tasks have been treated independently, using a wide variety 
of algorithms. He suggests a supervised corpus-based machine learning algorithm for 
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classifying analogous word pairs, and shows that it can solve multiple-choice SAT analogy 
questions, TOEFL synonym questions, ESL synonym-antonym questions, and similar-
associated-both questions from cognitive psychology. He argues that analogy provides a 
framework  that  has  the  potential  to  unify  the  field  of  semantics,  if  we  subsume synonyms,  
antonyms, and associations under analogies. He points out that, in essence, X and Y are 
antonyms  when  the  pair  “X  :  Y”  is  analogous  to  the  pair  “black  :  white”,  X  and  Y  are  
synonyms when they are analogous to the pair “levied : imposed”, and X and Y are 
associated when they are analogous to the pair “doctor : hospital”. 

In what can be characterized as a surface approach to compositional semantics, Lepage 
and Denoual (2005) present a machine translation system between English, Japanese, 
Chinese and Korean and demonstrate that the only thing needed by machine translation 
between these languages is analogy and a sufficiently large bilingual training corpus. They 
rely on the aligned sentences of the training corpus to be semantically equivalent. 

Stroppa and Yvon (2006) generalize the notion of analogical proportions to a generic 
algebraic framework capable of handling a number of representations that are commonly 
encountered in linguistic applications from raw text to syntax trees, e.g. words over a finite 
alphabet, feature structures, labeled trees, etc. For each case, they provide algorithms and 
discuss related work. 
 
6.4 Analogy and Exemplar-based Learning Methods 
 
Most exemplar-based learning methods can subscribe to the idea that for an exemplar A there 
is a pre-labeled or transformed exemplar B, and the idea is that for a new and previously 
unseen instance C, we wish to predict a labeled or transformed instance D. The difference 
between the methods is mostly in how directly they rely on the training material for making 
the predictions. Research shows that a larger set of training exemplars “A : B” gives better 
predictions. Common sense has it that a larger set of training exemplars will take longer to 
process, so to speed-up the prediction process, we need to preprocess the training data: either 
we reduce the data to the most essential and distinctive exemplars or we extract the most 
likely labeling or transformation rules.  

Memory-Based Learning (MBL) is applicable to a wide range of tasks in Natural 
Language Processing (NLP). Memory-Based Learning is a direct descendant of the classical 
k-Nearest Neighbor (k-NN) approach to classification, which makes predictions based on the 
pre-labeled k most similar neighbors from which an outcome distribution can be calculated. 
Daelemans (2007) has been working since the end of the 1980s on the development of 
Memory-Based Learning techniques and algorithms. The Analogical Modeling algorithm by 
Skousen (1989) differs from k-NN in that it groups neighbors according to similarity of 
context and consistency of prediction. This may give more emphasis to distant groups of 
neighbors with consistent predictions compared to k-NN. A consistent prediction for a 
context may contribute more than one outcome but the algorithm gives preference to contexts 
which contribute a single outcome. Skousen’s algorithm works directly on the data and 
retrieves all the analogies in order to estimate a probability distribution of the outcome. For a 
brief overview, see Skousen (2003).  

Lepage (1998) directly considers all combinations of A and B in the training data for 
making predictions, but the similarity of A to B and A to C is guided by the edit distance and 
the fact that all segments of A and D must be accounted for either by B or by C. See Figure 6 
for an illustration. Yvon (2003) generalizes the notion of analogy between strings introduced 
by Lepage by providing a definition of the notion of analogical proportion between strings 
“A : B :: C : D” over a finite alphabet. Given the definition, Yvon demonstrates that solving 
an analogical equation, i.e. finding the fourth term of proportion can be performed using 
finite-state transducers. He uses the degree of analogy, i.e. the number of discontinuous 

16



segments in the analogy, as the weighting scheme arguing that fewer is better, which can be 
used when reducing the search space. In addition, the frequency of the various outcomes 
generates a prediction distribution. 
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Fig. 67. Identical segments of A and D in C and B have the same indexes. 

 
Mikheev (1996, 1997) presents a technique for statistical acquisition of rules which 

guesses possible parts-of-speech for unknown words. A full-form lexicon with part-of-speech 
labels provides exemplars of inflected forms and pre-labeled base forms to learn rules from. 
A raw corpus provides frequencies of inflected forms for evaluating the positive and negative 
impact of the proposed rules. Three complementary sets of word-guessing rules are induced: 
prefix morphological rules, suffix morphological rules and ending-guessing rules. The 
learning is performed on the Brown Corpus data. The method relies on verifying some of the 
suggestions in a lexicon, which gives a good performance on medium frequency words, i.e. 
frequency rank 30,000-90,000, that tend to be words derived from the core vocabulary of the 
language, but not yet the most esoteric low-frequency strings. 

In our work, we use the method presented by Lindén (2008a), which estimates the 
probability of the possible prefix and suffix transformations from A to B using, e.g. a full-
form lexicon and a raw corpus. The probability of the core or stem segment copied from C to 
D decreases relative to the length of the segment. This fulfills the basic requirement on 
analogical proportions by Lepage that all segments of A and D must be accounted for either 
by B or by C as illustrated in Figure 6. The transformations are encoded as weighted finite-
state transducers. 

Lepage (2001) introduces the notion of concatenation of analogical operations, which 
Lindén (2008a) uses for decomposition in order to estimate the probabilities of analogies on 
prefixes, stems and suffixes separately. By pre-compiling the most frequent analogies found 
in the training data, we can assign probabilities to the analogy patterns in advance and use 
this pattern collection to speed up the calculations of the complete set of analogies and related 
probabilities. We argue that more likely transformations are better, and that transformations 
where A covers as much of C as possible are better, as such transformations represent attested 
information. 

Skousen’s (1989) algorithm treats the positions in a string as independent variables and 
all combinations are considered, i.e. also the non-consecutive ones. Lindén’s (2008a) 
motivation for considering only consecutive positions is that inflectional information tends to 
be at the extremes of a word or conditioned on the extremes of the root to which it is affixed 
or infixed. This tends to generate long suffixes and prefixes for the analogies potentially 
requiring more training data, but it also allows for very accurate matching when the training 
data is available as demonstrated in Lindén (2008b). 

Lepage (2000) proves some theorems characterizing the generative power of languages 
on analogical strings. He shows e.g. how reduplication, aa, and bounded center embeddings, 
anbmcn, can be explained via repeated application of the analogies a : aa,  as  well  as  
abc : abbc and abc : aabcc. As demonstrated by Lindén (2008), this is more power than 
currently needed to cover most of the active morphological phenomena in new and 
previously unseen words of English, Finnish, Swahili and Swedish. Arguably the 

                                                
7 Figure 6 is intended only as an illustration of the basic requirements of analogy. An analogy may be 
considerably more complex, e.g. when translating from one language to another there may be many more 
segments and the segments may be reordered, but all the segments in the source and the analogue target still 
need to be accounted for in the target or the analogue source. 
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reduplication of verb stems in past tense in Swahili could use a more powerful pattern 
induction mechanism, but generally this is not needed because new verbs occurring in past 
tense will also very likely occur in e.g. the present tense, so there are several opportunities to 
learn  a  new  verb  in  order  to  identify  its  paradigm  and  base  form.  More  power  is  probably  
required only in higher-level NLP tasks, e.g. syntactic analysis and translation as introduced 
by Lepage and Denoual (2005). 
 
6.5 Comparison with Results from Similar or Related Efforts 
 
Similar efforts have been made on other sets of test  data and some insights can be gleaned 
from comparing with them, even if a direct comparison is difficult. 

Stroppa and Yvon (2005) present experimental results obtained on a morphological 
analysis task guessing base form and morphological features for an inflected form in English 
with the following precision and recall: nouns 75 % precision and 95 % recall; verbs 95 % 
and 97 %; adjectives 28 % and 88 %, respectively. It is interesting to note that verb forms are 
the  easiest  to  get  right,  whereas  it  is  much  trickier  to  guess  the  correct  base  forms  and  
syntactic features of nouns and adjectives. The explanation is probably that the base forms of 
nouns and adjectives have much more varied character patterns, so there will be candidates 
suggesting analogies both with and without inflectional endings for many strings, whereas 
verb endings tend to be more easily identified. 

Wicentowski (2004) presents the WordFrame model, a noise-robust supervised algorithm 
capable of inducing morphological analyses for languages which exhibit prefixation, 
suffixation, and internal vowel shifts. In combination with a naive approach to suffix-based 
morphology, this algorithm is shown to be remarkably effective across a broad range of 
languages, including those exhibiting infixation and partial reduplication. Results are 
presented for over 30 languages with a median accuracy of 97.5 % on test sets including both 
regular and irregular verbal inflections. The excellent accuracy is partly explained by the fact 
that  he  uses  a  dictionary  to  filter  the  suggested  base  forms.  His  results  are  very  good,  but  
should be seen in the light of the results by Yvon and Stroppa (2005), where a substantial 
challenge seems to be in modeling the behavior of nouns and adjectives, which are also the 
most frequent categories among new words.  

Claveau and L’Homme (2005) label morphologically related words with their semantic 
relations using morphological prefix and suffix analogies learned from a sample of pre-
labeled words with a recall of 72 % and precision of 65 % on separate test data.  

Baldwin (2005) acquires affix and prefix transformations achieving 0.6 F-score for 
English using Timbl as the classifier, but the classification was for syntactic features not for 
inflectional paradigm. 

We recall that our model is developed for guessing the paradigms of unknown and 
previously unseen inflected words, i.e. their base forms cannot be tested against a lexicon. In 
view of the results from comparable reports from other languages, our results as shown in 
Table 8 for the combined model are very good, because the data shows that the final entry 
generators have 77-81 % precision and 89-97 % recall, i.e. an F-score of 84-88 %, on 
languages with different morphological complexity. It is perhaps to be expected that our 
model has the lowest recall for Finnish, which is morphologically the most complex of the 
three test languages. Due to the way the Swedish lexicon is constructed, it is also very 
plausible that precision is lowest for the Swedish entry generator as the set of paradigms was 
very fine-grained. 

Even a fairly loose but extensive lexical model is able to improve the performance of a 
purely statistical corpus-based model significantly, and vice versa. It should be noted that one 
reason for the low performance of the corpus-based model, is that the probabilities were 
estimated separately for the transformations from word form to base form and for base form 
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to paradigm. The advantage is that we need less training data for each of the two stages, but it 
disconnects some of the constraints between the inflected forms and the paradigms in the 
corpus-based model. However, the lexical model brings back the connections between an 
inflected form and its paradigm, which shows in the performance of the combined model. We 
can regard the corpus-model as encoding the performance of a human language model as 
manifested in corpora, and the lexicon model as generally encoding the competence of a 
native speaker. It is likely that the combination of the corpus information with e.g. stricter 
hand-made lexical models might further benefit the outcome by giving priority to more 
frequent sound patterns and paradigms that are known to be productive. What paradigms are 
perceived to be productive is, however, a task that is dependent on the size of the existing 
lexicon that is to be extended and the frequency range from which the new words are drawn.  

When studying the words for which the hybrid classifier failed to generate anything at all, 
we notice that they were uppercase strings for which the hand-made and the statistical model 
generated different suggestions. When put together, the statistical and hand-made generator 
had no common suggestion for these in the hybrid model. Converting the strings to lowercase 
is not a catch-all option, because many of them are acronyms for which case is significant. 
Acronyms are sometimes inflected according to the regular words, which they are 
abbreviations of, and sometimes according to their phonology as acronyms. 

A quick look at the words which fail for English reveals that among them are e.g. 
preacheth, Surmountheth, corruptehth, which could not have received a correct guess as out-
dated verb forms were not available as analogical models. We require the correct answer to 
have a specific base form and a paradigm which indicates all the correct inflected forms. E.g. 
the word equalizes gets the base form equaliz, whereas we expect equalize, even if the word 
is otherwise correctly identified as a verb. We also require that words like plowman are 
correctly identified as having the plural plowmen. It is not enough just to identify it is as some 
noun. The same goes for other words with irregular forms or deficient paradigms. This 
illustrates how entry guessing is more difficult than guessing the part-of-speech: a correct 
lexical entry requires guessing a base form and a paradigm that together produce all the 
correct forms and only the correct forms for an out-of-vocabulary word. 

An aspect that is not considered in this work is the fact that a word may appear in a 
corpus in several forms which together support one or more lexical entries, i.e. base forms 
with paradigm information. Forsberg et al. (2006) used an approach that automatically 
deduces extraction rules for which they could nd as much support as was logically possible 
in order to make a safe inference. This leads to rules safely extracting words that already have 
a number of word forms in the corpus, i.e. mid or high-frequency words. Such methods are 
especially suitable for resource-poor languages lacking readily available public domain 
morphological descriptions like the Ispell dictionaries (Kuenning, 2007) or similar. Forsberg 
et  al.  (2006)  concluded  that  it  is  recommendable  that  a  linguist  writes  the  extraction  rules.  
Lindén and Tuovila (2009a, 2009b) look for inflected word forms of each base form and 
paradigm combination to determine which lexical entries are best supported in a given 
corpus. However, it turns out to be difficult to gain significant improvements over the method 
presented in this article by using additional word forms, as new or infrequent words by 
definition appear only in one or two forms. These forms do not necessarily distinguish 
between very fine-grained paradigm descriptions. In such cases, more data or the evidence 
from a native speaker is still necessary to finalize the selection between the top candidates. 

We did a follow-up experiment using the entry generator for adding new words to our 
Finnish lexicon. We generated key word forms for the top 6 base form and paradigm 
candidates from which a native speaker selected the correct lexical entries. It turned out that 
the revising speed for a native speaker is 300-400 words per hour (Listenmaa, 2009). 
Consequently, adding e.g. 60 000 new entries to a lexicon using the proposed method can be 
achieved by 10 native speakers working in parallel in a few days. 
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6.6 Implementation note 
 
The models have been implemented with a cascade of weighted finite-state transducers. For 
conveniently creating morphological analyzers and entry generators, HFST–Helsinki Finite-
State Technology (HFST, 2008; Lindén & al, 2009) is available as an Open Source toolkit. 
Open Source tools for general manipulation of weighted finite-state transducers have been 
implemented by, e.g., Allauzen & al (2008) and Lombardy & al (2004). 

The entry guesser transducers correspond to what Lepage (2001) characterizes as the 
immediate analogical derivation of pure analogy, i.e. no reduplication is modeled, which is 
not such a big loss in practice, cf. Section 6.4. We also do not compute the transitive closure 
of the lexical analogies, which makes the derivation process relatively fast as it requires only 
a fixed number of composition operations. Instead we need a fairly large set of pre-compiled 
analogy patterns in the transducer. 
 
6.7 Future work 
 
In the same way that Lindén (2008) determined that 5000 words seems to be enough as 
training material for a base form guesser, it might also be interesting to see how small 
lexicons the entry generator is able to generate useful results from, while still speeding up the 
human post-processing. This is relevant for resource-poor languages building morphological 
analyzers from scratch.  

The current approach only considers information available within a word, even if the 
context of a new word also contributes to the lexical information human readers infer. When 
representing context information, a unification-based approach was predominant in the 
1990’s. How context can assist in inferring information for lexical entries has been studied 
e.g. by Barg and Kilbury (2000) and Barg and Walther (1998) in the project Dynalex–
Dynamic extension of the Lexicon. Earlier efforts focused on extracting lexical context by 
parsing typeset dictionaries into machine-readable form, which was explored e.g. in the 
Acquilex project (Copestake, 1992). Representing complex contexts using finite-state 
transducers is becoming increasingly possible and opens up interesting research aspects for 
lexical acquisition for finite-state parsers and translation engines. 
 
7. Conclusion 
 
We tested our models for classifying inflected forms of new words by analogy with a set of 
lexical entries from three different languages types. We tested on Finnish, which is a highly 
inflecting Finno-Ugric language with a considerable set of stem change categories and multi-
stem compounding, as well as on Swedish, which is a Germanic language with a fair amount 
of regular and irregular inflectional patterns and a multi-stem compounding mechanism. For 
comparison we also tested on English which is a Germanic language known to have very 
little regular inflectional morphology but a reasonable set of irregular and deficient 
inflectional paradigms with a very restricted multi-stem compounding. Our hybrid model 
achieved 77-81 % precision and 89-97 % recall, i.e. an F-score of 84-88 %. The average 
position for the first correctly generated entry was 1.6-2.0. A study demonstrated that a native 
speaker can revise suggestions from the morphological entry generator at a speed of 300-400 
entries per hour. 
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